A Simulation of Oxygen Diffusion within the High-Temperature
Superconductor Y Ba, Cu, O

6+x

using the Monte-Carlo technique

Ian Keith Robinson

An original study submitted as part of the degree in Computational Physics

undertaken within Salford University's Dept of Physics

Abstract

The effect of chemical potential upon oxygen diffusion within the superconducting
Cu-O laminar planes of YBa,Cu,0,,, has been investigated using Monte Carlo simulations
based upon the Ising model. Two programs were written and extensively tested to perform
this modelling. GLAUBER FOR and KAWASAKI.FOR employing Glauber and Kawasaki
dynamics respectively.

The results show evidence of phase changes occuring as the lattice structure evolves
with increasing oxygen concentration and the formation of a mixed phase region. There is
opportunity for further study of what appear to be minor phase changes developing at lower
temperatures.

1
1.1
1.2
1.3
1.4

2
2.1
2.2
23

3
3.1
3.

4
4.1
42
43
4.4

5
5.1
52

6

7

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Contents
Abstract

Introduction
Historical Background
Structure of YBCO
Preparation of YBCO
Brief Discussion of Superconductivity

Theoretical Background
Principles of Diffusion
The MonteCarlo method
The Simulation

The Computer Simulation
Lattice Simulations
Simulating Oxygen migration into a sample

Testing the Simulations
Testing the Random Number generator
Testing the Kawasaki (Diffusion) Program
Testing the Glauber Program
Summary

Results
Phase Change Diagrams using Glauber Dynamics
Attempts to monitor oxygen uptake against temperature

Summary

References

Technical documentation Kawasaki.for
Technical documentation Glauber.for
Technical documentation Histogram.for

Repitit.for
User Documentation
Program listings

1
1.1
1.2
1.3
1.4

2
2.1
2.2
23

3
3.1
3.2

4
4.1
42
43
4.4

5
5.1

6

7

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Contents
Abstract

Introduction
Historical Background
Structure of YBCO
Preparation of YBCO
Brief Discussion of Superconductivity

Theoretical Background
Principles of Diffusion
The MonteCarlo method
The Simulation

The Computer Simulation
Lattice Simulations
Simulating Oxygen migration into a sample

Testing the Simulations
Testing the Random Number generator
Testing the Kawasaki (Diffusion) Program
Testing the Glauber Program
Summary

Results
Phase Change Diagrams using Glauber Dynamics

Summary

References

Technical documentation Kawasaki.for
Technical documentation Glauber for
Technical documentation Histogram.for

Repitit.for
User Documentation
Program listings

1
Introduction

1.1 _Historical Background

The mathematically ideal would appear to be a rare quality within the universe.
Physics students wrestle with the equations of simple harmonic motion, 2-body gravitational
systems the gas laws and so on. Only to learn that these are idealised representations of a far
more messy, less clear cut world. Superconductivity stands out as salient exception, materials
exist which appear to permit, not a vanishingly small resistance but absolutely no impediment
to the flow of electric current.

Superconductivity was first identified in 1911 when the Dutch physicist Heike Onnes
noted that the resistivity of mercury appeared to suddenly vanish as the metal was cooled to
below 4.2 K. Over the following six decades researchers discovered a number of metallic
elements and compounds which shared this property. Despite the marked benefits which
would flow from the widespread use of superconducting transmission cables, motors and
magnets, practical applications remained esoteric due to the cost of liquid Helium required to
cool to such low temperatures.

T./K
Zn 0.87
Al 1.14
Pb 7.19
Nb 9.5
Nb-Ti 9
Nb,Sn 18
Nb,Ge 23

Table 1.1 The critical temperatures for a range of metallic elements and binary alloys

In 1986 IBM researchers discovered superconductivity in cuprate oxides and found
evidence for transition temperatures in excess of 30 K. This lead to an explosion of interest in
the superconducting properties of copper oxide ceramics. In 1987 research groups in Houston
and Alabama made a key discovery, that the YBa,Cu,0, ceramic had a transition temperature
of 92 K. Since the boiling point of nitrogen is 77 K then the possibility arises of more
widespread use of superconductors cooled by this relatively cheap and plentiful liquid.

T./K
La, Sr CuO, 38
YBa,Cu,0, 92
B1,Ca,Sr,Cu,0,, 110
T1,Ca,Ba,Cu,0,, 125

Table 1.2 The critical temperatures for a range of high temperature superconducting materials.

1.2 Crystalline Structure of YBCO

Yttrium Barium Copper Oxide (YBCO) possesses an anisotropic structure of copper
oxide planes separated by Barium Oxide and Yttrium ions (figs /./). This planar structure is
common to most high temperature superconductors, specifically the Copper oxide layers in
which superconduction takes place.
A model of the structure places two conducting copper oxide planes separated by an yttrium
site. These are blanketed by the copper oxide chains with an intervening barium oxide layer.

Cu-O chain

BaO

CuO, plane

Y

CuO, plane

BaO

Cu-O chain

fig 1.1 Schematic diagram of YBa,Cu,Oy,, (ref2pl77)

The copper oxide chains act as charge reservoirs. Adding oxygen upsets the charge balance
causing electrons to migrate from the copper oxide planes. The resulting holes can form
Cooper pairs below T, resulting in superconduction as per the BCS model. Thus the excess
oxygen fraction directly effects the superconducting properties of the material.

A key point here is that the excess oxygen atoms introduced into the structure form
copper-oxygen chains (fig 1.2). At high temperatures the oxygen atoms are randomly
distributed over the lattice. As the temperature is lowered ordering takes place due to long
range Coulomb interactions. The cations are effectively frozen in place over the temperature
range of interest and only the anions (oxygens) are able to migrate.

Oxygen ordering takes place in the (001) Copper Oxygen basal planes which
approximate to a square lattice . As Khachaturyan et a/ note that correlation between distinct
Cu-O planes is weak (they are some 12 Angstroms apart) diffusion within the layers is thus
orders of magnitude greater than that between layers [6]. Accordingly I have modelled
diffusion only within Cu-O planes.

fig 1.2 Crystal structure of YBa,Cu,0;

fig 1.3 Crystal structure of YBa,Cu,0,

The process of oxygen ordering converts the random (tetragonal) structure to one of two
orthorhombic phases OI and OII (fig 1.4).

(a)

figl.4 a)

This stoichiometric factor is of significance in determining the superconducting properties of

Orthorhombic [

the material.

YBa,Cu,0

6+x

(b)

b)

for 0.0<x<0.4 acts as an insulator.

* DD eD DD

i
I

e e S R S)
| |] I]]
I 1 i] 1 i
| 1 | I I !
1

¢ DD B D> D
1

! | | | ! ,
| 1 I i i 1
e _ - - -& -8 __ & ___¢
I i I 1 i

: | i i | !
1 1 1 1 i I
N T W .. S . SR W)

Orthorhombic I1

for 0.4 <x<1.0 acts as a superconductor.

Diffraction studies have indicated that most oxygen vacancies occur within the copper oxide
(a-b) basal plane. The aim of this work has been to model oxygen flow through this material
and compare these results with those of phenomenological studies carried out at Salford.

1.3 Preparation of YBCO

Pure phase crystals are typically produced by reacting together precursors for many
hours at a temperature close to the lowest of their melting points. For example one may mix
powdered Y,0, and BaO, and react in air or oxygen at >900 °C for > 5 hours to form
YBa,Cu,0,. Cycles of grinding and reacting may be required to produce a suitable
superconducting powder. These grains may then be sintered together at high temperature to
produce a bulk sample.

A key problem is controlling the excess oxygen fraction critical to the material's
superconducting properties. Excess oxygen may be introduced during manufacture by
manipulating melt times, quenching, and the partial pressure of oxygen in the surrounding
atmosphere. The team at Salford University are investigating oxygen uptake by YBCO
crystals at fixed temperatures for a range of surrounding oxygen partial pressures.

1.4 Brief Discussion of Superconductivity

There has yet to be developed a comprehensive theoretical model of superconductivity
in these new ceramic compounds. It is likely that any such model will draw upon the well
established models which deal with the older metallic elements and non-laminal compounds.

The BCS Theory

In 1957 J Bordeen, L Cooper and R Schrieffer presented a general microscopic theory
of (low temperature) superconductivity. Here they postulated that below the transition
temperature T there exists a net attraction between pairs of electrons in contrast to the more
usual Coulomb repulsion. One may picture this by imagining that an electron fractionally
distorts the crystal lattice through which it travels. An electron some distance behind has an
enhanced likelihood of following this wake before it relaxes, thus introducing a correlation
between the motion of the pair.

This results in a condensed state where electrons weakly couple with those of opposite spin
and momenta. The net momentum of such a pair is zero and hence their associated De Broglie
wavelength is, in principle infinite; or at least as large as the sample. Since any potential
scattering centres are many orders of magnitude smaller than A then no scattering should
occur. Thus without a mechanism to impede the flow of electrons the sample should exhibit
Zero resistance.

Unlike individual electrons which follow Fermi-Dirac statistics the Cooper pairs act as
Bosons obeying Bose-Einstein statistics. Electrons within a conventional metallic conductor
are each described by their individual wave function. Cooper pairs by comparison are all
permitted to occupy the same quantum state and thus are all described by a single
wavefunction.

Y(r) = /1 (r)e®

As all Cooper pairs are in the same state current flow becomes a macroscopic quantity
unaffected by microscopic scattering points within the lattice.

2
Theoretical Background

2.1 Principles of Diffusion

It would seem that a universal property of matter is the tendency towards minimum
free energy. Material systems tend to move towards stable equilibria by particulate migration
so as to eliminate spatial variations and thus minimise free energy. This is the cause of
diffusion which occurs in all systems above absolute zero. Diffusion rates vary markedly, from
seconds in the case of gases to millennia for crystalline solids.

In the mid 19th century Adolf Fick, noting that diffusion was analogous to heat
conduction, formulated a definition of diffusivity now known as Fick's 1st law.

J==Depem® 2.1
Here he assumed 1) net Brownian flow from high to low concentration
i) net flow is proportional to concentration gradient.

where] = net flow/unit time
= net particles crossing unit area in unit time

D, .. 1s a system dependant constant

chem

From the conservation of particles we may derive;

& _ —de
de ~ dt 22

From 2.1 and 2.2 we may obtain Fick's 2nd law

c ZC
% = Dchem %{ 23
In 3 dimensions ‘;—i =DepemV2C 2.4

The aim of these experiments has been to model flow into YBCO and determine a value for
D

chem”

For lattice diffusion in 2d the oxygen mobility M may be determined from the Nernst-Einstein
equation

M =*167kT

Where 7 is the mean site residence time, and /2 is the mean squared distance moved in one
jump. Mobility here is a measure of

Le Claire (1970) defines a tracer diffusion coefficient as
. D[:ft12/6't

which represents the enhanced probability that an atom having made a jump jumps back to its
original site. f, tends to unity as the concentration of diffusing particles tends to zero.
Hence we may write

M =D /kT

thus

dp
Dchem = MC;—C-

2.2 The Monte Carlo Method

The Monte Carlo method is a powerful tool for analysis of complex, many variable
systems. It has enjoyed particular success in modelling atomic systems and within quantum
electrodynamics.

In the case of atomic systems a mathematical determination of the varying phase
transitions may be impractical, particularly if one is dealing with more than one atomic species.
Monte Carlo simulations bypass almost all of this mathematics by modelling an assembly of
mutually interacting points (atoms). Since pairwise atomic interactions are easily quantified
then in theory one merely needs to model a sufficiently large assembly of atoms in order to
produce accurate results. One can view such a Monte Carlo simulation as sampling a massive
number of points within a system's phase space representing possible configurations. A given
'fitness' criteria, such as entropy, will then cause the system to migrate towards a minimal free
energy configuration

The simulations presented here are based upon the locally anisotropic two dimensional
lattice gas model proposed by Wille, Berera and De Fontaine [8]. This is identical to the Ising
model of antiferromagnetism and can also model binary alloys. We may consider the modelling
of oxygen diffusion into the laminal basal planes of YBCO as equivalent to a binary alloy with
the mobile oxygen atoms representing one atomic species and the lattice vacancies as the
other.

Mobile atoms may make random jumps to
vacant lattice sites. The probability of a
particular jump occurring is dependent upon
the resulting free energy change. One could
thus create an environment whereby the
model tends to the least energetic stable
configuration.

L 2 ¢ The mean field approximation assumes that
surrounding lattice sites are filled to mean
® concentration which means that we only need
Vi to take account of n.n or n.n.n interactions.

This greatly reduces computational load.

fig 2.1 The three n.n exchanges

In this case we assume three interaction parameters V,,V, and V,. We can then describe the
Hamiltonian of the total internal energy of the system

nnn nnn

nn
H=-V, Z nmy —Vy 2 onm =V 2, ning
i 7 i

where V, represents a n.n interaction, V, a n.n.n interaction mediated by an intermediate
copper atom and V, a n.n.n jump not mediated by a copper atom (fig 2.1).

The configuration partition function Z may be written as

z :‘x; ~H(x)/K»

Here we sum over all possible system configurations x, the Hamiltonians of each
configuration H(x). K, is the Boltzmann's constant and T a temperature term.

Thus the free energy G=U-TS

where G = free energy, U = internal energy and TS is an entropy term

we may write
G=-K, TIn(z)

Given the massive number of configurations possible within a physical sample Z is too
complex to evaluate formally. Approximations are available (Bragg-Williams and Cluster
Variation model) however these are likely to adversely affect accuracy in the relatively

simulation of the YBCO system.
2.3 The Simulations

The objective of this work was to simulate oxygen diffusion into the laminal Cu-O
planes of YBCO. The specific aim being to produce graphs of oxygen concentration against

temperature and concentration against pressure. These may be compared with those produced

by direct experimentation at Salford.
Programs were written to simulate oxygen diffusion into a sample from an external heat-bath.

complex scenario here. Thus Monte Carlo methods may be employed to carry out a numerical

The time to equilibrium concentration for fixed driving potentials was measured along with the

variation of final oxygen concentration as a function of driving potential. Both of these
simulations were performed for a range of temperatures.

10

3
The Computer Simulation

Two separate programs were developed to simulate the diffusion of oxygen with the Cu-O
layers of YBaCuO, Glauber and Kawasaki. Both simulated a grand canonical assembly of
oxygen atoms migrating from an external heat bath into an initially 'empty’ lattice of zero
stochiometric coefficient employing the Monte Carlo technique for computational
investigation of many body systems.

Glauber allowed jumps over arbitrary distance whilst Kawasaki permitted only nearest
neighbour exchanges.

Two additional programs were written to test the performance of the random number
generating routine used on the department's Alpha machine.

3.1 Lattice Simulations

In each program the lattice was modelled as a 50 by 50 array of lattice sites with the copper
atoms fixed in position. The programs represented these by integer arrays with different
integers used to denote atomic species.

The simulation process involved randomly selecting an oxygen atom and randomly choosing a
lattice site to jump to. The sum of the atom's interaction potentials with its neighbours was
compared with that assuming that it had made a jump to the vacant n.n site. If the interaction
potential at the vacant site was lower than at the current site the atom moved. If the potential
was higher the jump could still take place though with a probability which exponentially
diminished with the increase in interaction potential difference. Governed by

p = oMK
The three n.n interaction potentials are shown in fig 3.1

V1 the spatially n.n interaction
V2 n.nacross the unit cell centre
V V'. V3 n.n across an intervening Copper atom.

‘-\7?‘

The values used were

- V2 =-24 mRy
@ @ ovenaom V3 = 1.1 mRy [9]

‘ Copper atom

fig 3.1 The three forms of O-O interaction

11

The mean site interaction energies for the different phases should be:-

01 2V(2) +2V(3) -2.6 mRy
oIl 2V(2) 4.8 mRy
All sites occupied 25 mRy

The programs were tested with lattices pre-loaded with these phases and they returned the
expected values for mean site interaction energies.

3.2 Simulating Oxygen migration into a sample

Heat Bath

potential HB

/

L * L Lattice

fig 3.3 The Heat bath

The program Glauber measures oxygen diffusion into an initially empty lattice surrounded by
an infinite reservoir of oxygen atoms at a chemical potential HB. The program may monitor
oxygen diffusion (as measured by the change in concentration within the lattice) for either
fixed temperature and varying chemical potential or fixed potential and varying temperature.

To reduce run time the lattice may be preloaded to a desired concentration.

Glauber is a computationally intensive program with long run times before the lattice settles to
an equilibrium concentration. This is particularly problematic at low temperatures where the
probability of jumping up a potential gradient is greatly diminished. Two techniques were
considered to reduce run time;

L One approach used involved randomly pre-populating the lattice with oxygen
atoms. This greatly reduces run time and seems to have no effect upon the final
'settled' lattice concentration.

12

1. Jumps could be allowed over arbitrary distance i.e.; not just to n.n sites. Whereas this
use of Glauber dynamics does not accurately model the physical diffusion process the
lattice approaches equilibrium some orders of magnitude more quickly.

The program could be configured to monitor final concentration and mean site interaction

energy against the driving chemical potential of the heat bath at fixed temperature or varying

temperature for fixed chemical potential. The final values of the dependant variables
concentration and mean site energy were given as the mean and standard deviations over the
previous 100 samples.

I employed Glauber dynamics for monitoring the variation of final (equilibrium)
concentration against chemical potential for fixed temperature. Whilst a second program
configuration 'Kawasaki', allowing only n.n jumps, was employed to measure the flow rate as a
function of driving potential for fixed temperature.

4
Testing the Simulations

Writing programs of this type is comparatively simple. The difficulty lies in ensuring
that they function as intended. Hundreds of hours were spent in testing, then correcting errors
and fine tuning performance, particularly with respect to the edge effects caused by the wrap
around. A summary of the testing is presented here.

4.1 Testing the Random Number generator

A computer can generate a single number at random. One could set up a loop to cycle
through digits stopping at a keypress. Since a person cannot reduce the time between strokes
to much less than 0.1 seconds and given the speed at which the machine can cycle through a
set of digits we can safely assume that a digit has been chosen at random. However digital
computers are deterministic devices and as such are incapable of generating strings of
genuinely random numbers.

Monte Carlo simulations of the type described here necessitate the serial generation of
large quantities of random numbers, both Glauber and Kawasaki used the Nag library routine
GOSDAF.

Such routines typically develop an initial seed number from the system time. Subsequent
pseudo random numbers are developed from an algorithm such as the power residue method.

x, = cx_,(mod N)

where N and c are constants and x, is the initial seed number.

Given that computers are deterministic devices and the algorithm used such sequences

can only be described as pseudorandom, a salient point being that the sequence will repeat
after some interval.
There would seem to be no general theoretical technique for predicting the performance of
most pseudorandom number generating algorithms particularly with regard to the statistical
properties of the numbers generated. The sequence length is generally less problematic. For
the algorithm above this is maximised when

c=8n+3 where n is any positive integer
and X, is any odd integer.

I decided to carry out two comparatively simple tests of the GOSDAF routine which should
detect any gross deviation from a random sequence. Firstly I looked at the distribution of
numbers generated. Secondly I looked for repeated sequences and pseudorepitition.

4.1.1 Frequency Distribution

If one generates M numbers in the range 1 to N and tally those which lie in
each of the equal intervals 1/N one would expect a uniform distribution across the intervals.
One would require that the individual deviations from the mean tally in each interval should
obey the appropriate statistical laws.

The probability of finding x numbers within any given subinterval is given by

14

e—(x—,%)2/252
where X is the mean number in all intervals, and G is the standard deviation given by
c = J%.
Given that we expect a Gaussian distribution one would expect to find 68% of the tallies to be

within one standard deviation point of the mean. Also one would expect the rms. deviation for
all subintervals to approach ¢ for large M.

d. . = L%aﬂ - LAf —%)2
ms T A M T AM (xi =%)

To investigate the frequency distribution a program, Histogrm was written to generate 10
million numbers in the range 0 to 100. These were tallied into 100 equal intervals (fig 4.1) .

102000 A

100000

58000 4

96000 A

94000 A

92000 A

90000

fig 4.1 histogram showing frequency distribution of 10,000,000 numbers

800 FI
200 B e H : ‘: i %.
0 L T R mamie
g i F TEE Bl
200 - % ‘{ g ' g é }S) ;’. ;
' L. |
fig4.2 Deviations from ¥ (100,000) msd =321.9 71% of values within 1 sd of ¥

Here the msd of 321.9 is within 2% of the predicted figure of ¢ = /100000 =316.2. A
cumulative frequency plot of no of deviations falling within specified ranges of the mean is

15

shown in fig 4.2 The weighting towards the upper range may be a result of a single 'large’
deviation in the number of values returned between 17 and 18, though here the absolute count
was only 1% or 3 sd units above the mean.

1 1 SD unit
I wiah

In conclusion the GOSDAF !
number generator produced :
a reasonably uniform
spread of values with 71%
falling within 1 sd unit of
the mean. The sample was
distributed with 52% of the
values below the mean and
48% above. Given these it
seems reasonable to assume
that the distribution
approximates to Gaussian
form.

fig 4.3 Plot of no of deviations against distance from mean

4.1.2 Serial Correlations

The second series of tests on GOSDAF attempted to identify any tendency towards
repetition of the random sequence. GOSDAF should have an extremely long period and it was
not expected to cycle within the limit of processor time available. I chose to check for more
subtle signs of partial repetition and the tendency towards serial correlation. A comprehensive
series of tests would be unfeasible. One could look for series of numbers consistently above or
below the mean, series which increment in a particular fashion, series which tend to lie within a
sub-range of those required and so on. The program Repitit monitored two aspects of the
random series. The first simply measured the maximum length of any repeated series. The
second test was more subtle and looked for a generalised tendency towards repetition.
The program generated 107 integers in the range 1 to 100. The first 1000 of which were
systematically compared with the rest and the length of the maximum repeated string was
measured.

For any number X, in a string of n random integers with m degrees of freedom one
would expect the probability of it equalling x, ,; to be given by

pxi =Xisai) = w

and the probability of any series of length s beginning with x; to be equal to that at an distance

di to be
1

P =5
Therefore in any series of n numbers we would expect to find a maximum repeated string
length of '

n=m’

16

On two runs of 10° numbers Histogrm found a maximum repetition length of 4 in line with
predictions.

The second test was devised to look for a tendency towards correlation. It takes the
initial 1000 numbers generated and compares them with the subsequent series and counts the
quantity of number pairs (Correlations) which it finds.

Xira i3 4 Xiss i

. . I

X

Xirdi+1 Kirdit2 i3 Kirdira Xirdits

i+di+6 iHdi+7 I ~~~~~ l s

The program stores the first 1000 numbers generated in an array. These are then
compared with all subsequent series commencing x, fori= 1001 to n - 1000. With the
quantity of correlations recorded.

I am unaware of this being a standard form of correlation test. It was based upon a
technique used in cryptoanalysis and developed by the American cryptographer William
Freedman in about 1920. It is notable that the worlds first electronic computers applied this
technique during the Second World War to help break the German Enigma and Japanese
Purple ciphers.

The probability of any integer x being equal to another x; is given by

Pl = x)=x

assuming m degrees of freedom and a uniform distribution. So for the case of m = 100 one
expects to see 10 number pairs per 1000 number series compared.

The program records a histogram of the number of correlations. Additionally if the number of
correlations exceeds an arbitrary threshold value (24) this is recorded against the offset di. to
help detect any periodicity in
correlation peaks.

This test should detect partial
or interrupted repetition whereby for — wm
example a repetition occurs where
every 10th number is repeated and
the intervening ones do not.

12000000

10000000

Fig 4.4 shows the correlation S
histogram produced. It appears to be

of a normal distribution peaking at oo

the expected value of 10

correlations. The mean correlation is

within 0.003% of the expected value B
of 10 implying no general tendency

towards repetition within the sample 0
of 10° numbers.

1234567831011 1R13UISIBITBIVDAZ2IASZBT7BII03RIHUS

fig 4.4 Frequency of number of correlations

17

Seeking signs of periodicity between high correlation peaks fig 4.5 shows the sequence
separation between the first 256 high correlations found. The mean distance between high
correlations over the entire sample was 54674 with a standard deviation of 58004 again
implying no marked periodicity in these high correlation sequences.

32

31t

30

29 T

Correlation

28 1

T LR e

25

0 2000000 4000000 6000000 8000000 10000000 12000000 14000000

fig 4.5 Plot of first 250 high correlation value against distance

In summary runs found no marked deviation for the gross statistical properties which one
would expect to see with a random sequence. The tests though were far from exhaustive.

Histogram simply measured the bulk distribution of numbers and would not detect sequences
of numbers which tended towards a subset of the range. A more sophisticated check would
seek serial frequency discrepancy looking for series of numbers which deviated from a uniform
distribution.

Repitit was based on a more powerful algorithm examining a general tendency towards serial
correlation along with identical repeated sequences. Its salient limitation lies in the fact that it
compares the first 1000 numbers generated with subsequent numbers. GOSDAF commences a
generation of random numbers at some arbitrary point within the total series. It is possible that
the initial 1000 numbers lie within a near random sequence and if so any subsequent serial
correlations are likely to be overlooked. One technique to overcome this would be to use a
longer initial sequence though this would increase processing time. To test N values against an
initial sequence length of m requires m x N comparisons to be performed. Whereas such a
linear growth rate is generally preferable to exponential growth the length of pseudo random
sequences prior to repetition precluded investigation of the series length.

18

4.2 Testing the Kawasaki (Diffusion) Program

4.2.1 Time to Equilibrium

The computational intensity of the Kawasaki program results from the massive number
of exchanges required before the system settles down to equilibrium. As the jump rate is
temperature dependent this effect is more marked at lower temperatures. Since only nearest
neighbour interactions are permitted Oxygen atoms have to diffuse into the centre sample from
the edges which greatly increases the time to equilibrium.
Of particular interest is the temperature range below kT/V(1) = 0.1 in which the O1 phase
predominates. Investigation of this region is hampered by very long run times.
The runs below were all performed on a 100 by 100 lattice.

The X2 run
Here kt/v(1) = 0.7 and the chemical potential of the heat bath HB was set to the comparatively
high value of 10.

0.9

0.8

0.7

Concentration

0.3

0.2 — -

L | 1 ! 1 I |

[0} S5e+06 le+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+0°

Jumps

4.6 Cvsjumps for HB = 10, kt/v(1) = 0.7

Fig 4.6 shows the variation in concentration against the number of attempted n.n exchanges
(jumps) within a 101 by 101 element lattice.

It is clear that even at this high temperature the system requires approx. 10’ attempted
exchanges to reach equilibrium. Fig 4.7 shows the variation in mean site energy, the variability
in which suggests that activity is still proceeding when the lattice has settled to a stable
configuration.

19

£313u3 ayig ueaR

1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+0
Jumps

le+0Q7

Se+08

fig 4.7 Evs jumps for HB = 10, kt/v(l) = 0.7

o

°

oxygen atoms

fig 4.8 Final lattice snapshot + = Cu atoms O

20

The X9 Run
A massive run was performed to determine the equilibrium point at kT/V(1) = 0.07

Fig 4.9 implies that 10° attempted jumps are required to reach stability at this temperature
compared to 10" jumps at kKT/V(1) =0.7.

0.9 —

0.85 —

0.8 —

Concentration

0.7

0.85

0.8

0.55

OB 0 T66000k000 0

1 1

0.5

SR

Ze+09 2.5e+09 3e+09 3.5e+09 4e+0¢

Jumps

Se+08 le+09 1.5e+09

fig 4.9 Cvsjumps for HB = 10, kt/v(1) = 0.07

—2.8

-3.2

—-3.4

Mean Site Energy

FOTOTOOO® goh %I

1 1 I Il 1 1

o Se+08 le+09 1.5e+09 Re+09 2.5e+09 3e+09

Jumps

fig 4.10 E vsjumps for HB = 10, kt/v(1) = 0.07

3.5e+09

4e+0¢

Fig 4.10 indicates rather lower relative variability in the mean site energy than that for

kT/V(1)= 0.7 possibly as a result of lower jump rates due to the lower temperature.

21

COCOCOCOCOCOCOCOCOCOCOCOCDCOCOCOCOCOCOCOCQCDCOCOCO
COCOCOCOCOCOCOCOCDCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO
COCOCOCOCDCQCOCOCDCOCOCOCOCOEOCOCOCOCOCOCOCOCDCOCO
COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCQCOCOCOCOCOCO

COCOCDCOCOCDCOCOCO

o

COCOCOCDCOCOCOCOCOCDCOCOCOCOCOC

ocococo
COCDCOCOCOCDCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC

fig 4.11 Final lattice snapshot + = Cu atoms O = oxygen atoms

4.2.2 Summary

At a high temperature of KT/V(1)= 0.7 the lattice requires of the order of 1.5 x 10’

jumps to reach equilibrium. At a low temperature of KT/V(1)= 0.07 the lattice requires of the
order of 2 x 10° jumps to reach equilibrium

4.3 Testing the Glauber Program

4.3.1 Time to Equilibrium

Glauber permits atomic exchanges over arbitrary distances and thus reaches

equilibrium much more rapidly than Kawasaki. The runs were performed on a 50 by 50 lattice
to further reduce run time.

Run 1

Run 1 monitored the oxygen concentration against time (attempted site exchanges) at
a driving potential (HB) of 10 and a (high) temperature of kt/V(1)=0.2 (figs 4.12, 4.13).
These imply that approx. 1 million attempted site exchanges are required to reach equilibrium.

22

KT =0.2 HB =10 20/8/97 KT =0.2 HB =10 20/8/97

0.5
0.49 p%\f‘f‘\«

0.48

'E_0_2.DAT" +

0.47

°
H
o

Concentration
<}
'
(4]
Mean Site Energy

©
~
IS

200000 400000 600000 800000 1e+0

200000 400000 600000 800000 1e+0
Time (attempted jumps)

Time (attempted jumps)

fig4.12 fig4.13

Run 2
Run 2 monitored the oxygen concentration against time (attempted site exchanges) at

a driving potential of 10 and an intermediate temperature of kt/V(1)= 0.1 (figs 4.14, 4.15).

KT = 0.1 HB= 10 20/8/97 KT =0.1 HB= 10 20/8/97

0.505 0.505
'C_0_1.DAT + 'C_0_1.DAT' -
%

0.5 TMn 05 '
0.495 }\ﬂiwy 0.495 . e]
=3 i g
50.49 | S0.49
= ©
I =
z c
S @
§.485 8.485
o o

0.48 0.48

0.475 0.475

4e+06 8e+06 12e+07 1.6e+07 2e+0 4e+06 8e+t06 12e+07 1.6e+07 2e+0
Time (attempted jumps) Time (attempted jumps)
fig. 4.14 fig. 4.15
Run 3

Run 3 monitored the oxygen concentration against time (attempted site exchanges) at
a driving potential (HB) of 10 and a (very) low temperature of kt/V(1)= 0.007 (figs. 4.16,
4.17)

23

0.492

0.49
0.488
0.486
0.484
§uas2

trat

£0.48

ncel

8478+

0.476

0.474

0.472

KT = 0.007 HB= 10 20/8/97

'C 0 0 07 DAT -

4e+06 8e+06 1.2e+07 1.6e+07 2e+0
Time (attempted jumps)

fig. 4.16

4.3.2 Summary

Temperature kT/V(1)
0.2
0.1
0.07

4.4 Overall

Mean Site Energy

-1.8

KT = 0.007 HB= 10 20/8/97

ﬂv\’“ﬂ

'E_0_0_07.DAT' «

4e+06 8e+06 1.2e+07 1.6e+07 2e+0
Time (attempted jumps)

fig. 4.17

Approximate Time to Equilibrium

1x10°
1.6 x 107
1.2x 107

GOSDAF routine appears to generate strings of pseudo-random numbers which show

no marked repetition over runs of 10’

The Glauber program reaches equilibrium some 100 times faster than the Kawasaki

program at low temperatures.

Lattice images generated by both programs show similar structures developing at

comparable temperatures.

24

S
Results

5.1 Phase Changes within the simulations emploving Glauber Dynamics

Here the final equilibrium concentration of the lattice was plotted against the chemical
potential of the heat bath. Runs were performed at 4 temperatures, kt/V(1) =0.2, 0.1, 0.07,
and 0.01. Some interesting structure in the plots was observed at the lower temperatures
including the formation of the OII phase.

5.1.1 High Temperature

Here the temperature KT/V(1) = 0.2. the driving potential of the heat bath (HB) was
varied from -10 to +40 in steps of 0.5. After each increment in driving potential the lattice was
run for 2 million attempted site exchanges to stabilise. at the end of each increment the
standard deviations of the results (concentration and mean site energy) were calculated.
However the values were too small to resolve on the graphs. Concentration is normalised to a
fully filled lattice, i.e.. the concentration of the OI phase = 0.5.

KT=0.2 Runt 11/8/97

'C2.DAT' —-—

HB

Concentration

/fig 5.1 variation of concentration with driving potential kt/v(1)=0.2
In fig 5.1 we can see that the lattice gradually fills to C=0.5 at which point a highly stable OI
phase forms. This resists further ingress of oxygen atoms until the driving potential reaches
~22 when the lattice continues to fill to saturation. Little other structure is immediately
apparent.

The plot of mean site n.n interaction energy against driving potential presents a similar
structure. The site energy falls to -2.4 mRy, characteristic of the OI phase, mirroring the
concentration curve. As the OI phase is disrupted by ingress of oxygen atoms the energy
gradually rise to the 25 mRy expected for a fully filled lattice.

Fig 5.3 shows an image of the lattice at HB = 10 exhibiting an expected single region
OlI phase.

However fig 5.4, an image at HB = 0 shows a mixed phase OI and OII sample. These
OIl regions are lacking at HB = -5 and +5. I had not expected the OII phase to appear at such
a high temperature.

25

KT=0.2 Run1 11/8/97

HB

5 10 15 20 25
Mean Energy

fig 5.2 variation of mean site interaction energy with driving potential

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ c ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ coco

S0C0C0C0C0CO0C0CO0CO0COCOCO0CO0COC0O0COCOCHC
C0C0CO0CUCACOCOC €COCOCOCOCOCACOCOCOCOC
9C0C0C0C0C0C0CO0CO0CO0C0COC0COCUCO0COCOCT
0C0C0CO0CO0CUCO0CO0COCVCOCOCOCOC0COCOCOCT
0C0CDCO0CO0CO0COCOCOCVEOCOCOCOCOCACOCOCT
0C0C0C0C0C0CO0CO0COCOCOCOCOCOCO0COCODCOCT
0C0C0C0C0CO0COCO0CO0CO0COCO0COCO0CUCOCOCOCC
0C0COC0C0CNCO0COCO0CO0COCO0COCOCOCOCOCOCDT
0C0C0CO0CODCO0CO0COCOCOCVUCOCO0COCO0COCOCOCDO
0C0C0C0C0CO0CO0COCOCOCO0COCUCNCOCOCOCOCT
0C0CNCOCNDCOCOCOCOCOC0CO0CO0CO0CO0C0COCOCT
6C0C0C0C0CO0CO0CO0COCOCO0C0CO0COCOCNCOCOCDO
0C0C0C0C0C0CO0CO0CODCO0CACOCOCO0COCDOCOCOCD
0C0C0C0C0CO0CO0CO0CO0C0COCO0C0CO0C0COCOCOCDH
0C0C0COCO0COC0CO0CO0COCO0COCACO0C0O0COCOCOCDO
0C0CO0C0C0CO0CO0CO0CO0CO0CO0CO0CO0CO0C0OCO0COCOCDO

0C0C0CO0CO0CO0CO0CO0COCO0CO0COC0C0CO0C0O0C0OCOCDO

fig 5.3 Lattice at HB = +5

cocococococacococococococococococococo
¢ ¢ ¢ ¢ ¢ e ¢ ¢ ¢ ¢ ¢ ¢ T € ¢ ¢ ¢ ¢ ¢
cococococococnococococococococococococo
¢ ¢ ¢ ¢ ¢ ¢ e © ¢ cococoec ¢ ¢ ¢ ¢ ¢ ¢
cococococococococococococococococococo

c <
o

cococococococncoc ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
cococococococorococococococococacoc ¢
¢ ¢ ¢ coc © ¢ cococococ ¢ ¢ ¢ ¢ ¢ ¢ Co
cocococaocococacococncococococococococo
¢ ¢ ¢ ¢ ¢ ¢ ¢ c € ¢ ¢ ¢ € ¢ ¢ ¢ ¢ ¢ ¢
cocococococococococgcacocococucocococo
¢ ¢ ¢ ¢ € ¢ ¢ ¢ € ¢ ¢ ¢ coc ¢ ¢ ¢ ¢ ¢
o
cocococococococococ ¢ ¢ ¢ ¢ cococococo
cococococococococococococococococococo
¢ ¢ ¢ ¢ € ¢ ¢ cococococ ¢ ¢ ¢ ¢ ¢ ¢ ¢

cococococacococo0cocococococococaocococo

fig 5.4 Lattice at HB = 0

5.1.2 Medium Temperature

Temperature KT/V(1) = 0.1. HB was varied from -10 to +40 in steps of 0.25. After
each increment in driving potential the lattice was run for 4 million attempted site exchanges
to stabilise. All other comments as 5.1.1.
Fig 5.5 has the same general shape as fig 5.1 dominated by a stable OI phase. However there
appears to be some discontinuity at HB = -1 and +27. A plot of mean site energy against HB
(fig 5.6) shows similar discontinuity at these points. At HB = -1.5 the site energy has dropped
to approx. - 4.8 characteristic of the OII region.

A picture of the lattice at HB = -1.5 (fig 5.7) shows that the lattice has initially ordered into
the OII phase. By HB = -0.5 (fig 5.8) this has changed to a mixed phase Ol and OIl. At HB =
+0.5 (fig 5.9) this has settled into the OI phase .

26

HB

HB

KT =0.1 Run1 11/8/97
40 : ;

'C2.DAT" »—

0 0.2 0.4 0.6 0.8 1
Concentration

fig 5.5 variation of concentration with driving potential kt/v(1)=0.1

KT=0.1 Run1 11/8/97

~

'E2.DAT" -—

5 10 15 20 25
Mean Energy

fig 5.6 variation of mean energy with driving potential kt/v(1)=0.1

27

o
o
o
<
o
c
o
¢
o
c
o

¢ ¢ ¢
o

c ¢ ¢
o

¢ ¢ ¢
o

c ¢ ¢
o

c ¢ ¢
o

-
o o

c ¢ ¢
o

c ¢ ¢
o

c ¢ ¢
o

¢ ¢ ¢
o

c ¢ ¢
o

¢ ¢ ¢
o

c ¢ ¢
°

1
foao

°
c
°
c
o
c c
o o
c c
o o
c ¢ <
o °
c ¢ <
o o
c ¢ ¢
o o
c ¢ ¢
o o
c ¢ ¢
o o
¢ ¢ ¢
o o
c ¢ ¢
o o
¢ ¢ ¢
o o
¢ ¢ ¢
o
¢ ¢ ¢
o o
c ¢ ¢
o o
c ¢ ¢
° o
¢ ¢ ¢
o o
c ¢ ¢
o o
c ¢ ¢
o o

o
-
o
c ¢
o
c <
o
c ¢
o
[
)
¢ ¢

0ChoACNONGCAORNOARAOAOAODOAONGACA
a

o ° o o
c ¢ ¢ ¢ ¢ ¢ ¢
o o o o
¢ ¢ ¢ ¢ ¢ ¢ ¢
o o o o
¢ ¢ ¢ ¢ ¢ ¢ ¢
o o o o
¢ ¢ ¢ ¢ ¢ ¢ ¢
o o o o
¢ ¢ ¢ ¢ ¢ ¢ ¢
° o o o
¢ ¢ ¢ ¢ ¢ ¢ ¢
o o o o
¢ ¢ ¢ ¢ ¢ ¢ ¢
o o o o
¢ ¢ ¢ ¢ ¢ ¢ ¢
a o o o
¢ ¢ ¢ ¢ ¢ ¢ ¢
o o a o
¢ ¢ ¢ ¢ ¢ ¢ ¢
o o o o
¢ ¢ ¢ ¢ ¢ ¢ ¢
o o o o
¢ ¢ ¢ ¢ ¢ ¢ ¢
o a o 2
€ ¢ ¢ ¢ ¢ ¢ ¢
o o o o
¢ ¢ ¢ ¢ ¢ ¢ <
) o o o
¢ ¢ ¢ ¢ ¢ ¢ ¢
o o o o
¢ ¢ ¢ ¢ ¢ ¢ ¢
o o o o
€ ¢ ¢ ¢ ¢ ¢ ¢
o o o o
¢ ¢ ¢ ¢ ¢ ¢ ¢
o o o o
¢ ¢ ¢ ¢ ¢ ¢ <
o o o o

nonoa

9AacnNnocNnoROROACAORGAOA

c ¢ ¢ c
o

7EOC € COEO0CUCOCOCaCHNCOCOCICOLNCOCOCOCD
o

¢c ¢ ¢ ¢ ¢ ¢ ¢ © ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ coco

fig 5.7 Lattice at HB

c

c

ecoc

ococ

ecococococococ

\

fig 5.9 Lattice at HB = +35
fig 5.10

KT=0.1 RUN2 11/8/97

fig 5.8 Lattice at HB =-0.5

A more detailed investigate of this first

HB

‘ discontinuity as carried out with a run over the
. range HB = -5.5 to +2 incrementing by +0.1.
: In fig 5.10 one sees a lessening in oxygen uptake
: between ~ HB -2.2 and -0.5 which may be
: attributed to the increased stability of the OII
: phase. In fig 5.11 we see the mean site energy drop
: to that of the OII phase -4.6 mRy.
: Note: The energy peak at HB = -4.7 has been
: investigated and appears due to the chance
: / configuration of a few atoms.
figs.l1
KT=0.1 RUN2 11/8/37
'C2.0AT ’ 'E2.DAT

HB

0.05 0.1

0.15

0.2 025 03 035 04 045 05 -5 45 -4 35 -3 25 -2 15 1 05 O

Concentration

Mean Energy

28

The upper discontinuity around HB = 26 was also investigated with a higher resolution run.
Plots on concentration and mean energy both show clear signs of some form of state change,
figs 5.12 and 5.13.

HB

30
29.5
29
28.5
28
275
27
26.5

26

255+

25

KT =0.1 RUN 4 20/8/97

'C2.DAT +

3

055 06 065 07 075 08 0.85 09 095

Concentration

figs.12

1

30
29.5
29
28.5
28
275

HB

27
265
26
255
25

KT =0.1 RUN 4 20/8/97

'E2.DAT'

8

10

12 14 16

Mean Energy

figs.13

18 20 22 24 26

Snapshots of the evolution of the lattice reveal the formation of an unusual phase (figs
5.14 to 5.18).

At HB = 25 the sample exhibits a multiple region OI phase, to be expected from the
- energy plot in fig 5.6. As the driving potential increases to 25.5 the lattice absorbs more
oxygen atoms. these preferentially sit on an OII phase running at right angles to and across the
existing OI lattice. At HB = 26 this secondary phase is virtually filled. By HB = 26.5 incoming
atoms are having to site at the remaining free interstitial sites. By HB = 28 almost all
interstitial sites are filled and the mean site energy approaches 25 mRy, that expected for a

fully filled lattice.

0-0-0-0:0-0+0+0+0-0+0-020+0-0-0-0-0-20- . °
° ° ° ocacn:ocucocorococococococOcOcocOcucoc
-0-0-0-0-0-0+0+0+0+0-0-0+0+0-0-0-0-0-0- . o
e o o o o o OCDCOcocucocococococo:ncococococacacoc
- - -0-0+,0-0-0+0-0-0+0-0-0-0-0-0-0-0-+ .
e o o ° o o o o o Dcoca:oco:ococacu(otococococococarucoc
©0-0-0-0-0+0+0+0+0+0+0:20+0°:0-0-+ =+ =« . . °
. : o 6 0o o o oca:ococacnco(ocncocaca:oco:o:a:orccoc
©0+0-0-0-0-0+0+0+0+0-0+0-0:0:0-0-0-00=:0-
s aa s o o o ocncacccocococucococococococncococqc
. . - .0+-0-0-0+0+0+0+0*0+0-0-09+-0+-0+0- . o o oc
o e o o @ ° o o oco:ocu:ocucocucncacococo:ocococacncoc
. -+ + -0-0:0:0+0-0-0+0-0-0-0-0:0:0-0- =
o o o o o o ° o o oco:o:ncocococoeacocncocococococo:oco:
. .0-0:-0-0-0+0+0+0+0-0°0+0+0-0-0-0=+0- - N
s a2, o ° ° PO occcocococoCocacocofucatocugocacocDcoc
. + + - -0:0-0:0-0-0-0-0-0-0:0-0-0-0- - ° N
S e e o o . ° ° s o ncncoco:acoco:oco:acocococchc‘,cocatoc
« - +- + .0+0-0-0-0-0+0-0-0-0-0-0-0-0- . S <
o o o o o o o o o Ocucn:ocococoto(ocococacococ(,co(n,‘,toc
. - -+ -0-.0-0-0-0-0+0+00-0:0-2-0-0-0-0-
a o o o ° o o OCOCOCnceroeocoro(otatocacncotorocucoc
. +0-0-0°0-0+0-0-:0-0+00:0:0:0:0-0-0-:0-"
R o o o araco:orocucacocnrocacococn:ororoco:oc
. .+ - +0-90-0:0-0-0+0°+0-0-0-0-0-0-0- -+ .
ucocococato
S ° 5 o o corarocotncacacu:oco
> Y Y6 6-.0.0-0-0-0-0-0-0:0-0-0-0-0-09-0- ° ‘°(°°°c
ucococococn:o
o o o o rococo:otoca:o(ococ
0 -0-0-0-0+0:0-0+0+0+0:0:0:0:0:0:0:0-09- oc ocococ
ocncarococot
o o ocufotoca'ocu °
® % - 0.0-0-0-0-0-0-00-0-0:0-0-0:0:0:20 e c cocu(oroc
°
P :ﬂto:oco(uco(ocoro(oca(aco:Dcofocnc
“n-0D-0-:0-0-0:20-0-0:0-0:0°:0°:0-0:0-0-0-"-0 oc]
ocor
o o S oo 0:u(ototorarorocacocorncotococo(
-5-0-0-0:0-0-0-0-0-0-0°-0°0"0" E -9 ﬂtoro o
o <
5 Y o Dtoeororacxcorocoracocornru(oroc
P -0 -0-0-0-0-0-0-0-00+0:0°0°0"0" °
R N N o “"Dforucorncornrorococorocacocon
7, P coeor
SN AN -N.n.0-0+0-0-0-0:0:0"2°0°"0" 00 ° o e

o

fig5.15

29

o

25

2 and above 25

hecncococncoCcoCcol

9

fig 5.19

oc¢cncococ0oCcocoO

-

1
!
1
8 !
0 ! &
O !
on N~ !
LT UOLEUOUOUOUOULOUOUOLOLOUOULOUELOLOLOL [4+1 [ve)
o 2o o © © o ©6 ©6 © o © © © © © © 0 0 O = Wu f w
CUNUOLOUDNDULOLAIUAUOUVUOULUOULUOVOUOUOLOVOVOLOU C —) A
©c c o o o 5 5 6 85 5 6 56 5 6 06 © 0o o o v >
HLELUOLOLELUCUNLOUOUOUOUOLEUOUOUOUVOUOUOU i (o))
5 6 o= € & o 6 o o 5 6 5 o © 6 ©6 o o o [¥] — , ﬂ
E oL oL OUALEUBLCUOUEUOUOLOLUOUOUOUOUOUOU) I
c c 5 o 5 5 o5 0o o o 5 o o o © o o © © 3 Z | o
6060 ALOLOELOLOLUOLOLOLOLOLOLOLOLOUOUBULEY N =) ' Quw
© o 0o o = o o o o © 6 0o 6 06 o o o o ~ A \ c
PLOVLOUCUOULOWOUOUVOUOIVOULOVOUOLOUVUOULOVLOUOUL i I\
= o o © o o 5 o © ©o 6 © o © o © ©o © N~ 1 (]
CUCUOUOUCLOLOLOUOUOULOUOUDUDOUOUOUBOVOLOUL g o 1 M
© o6 c o = o o6 o 6 6 0o o6 6 86 &6 0 0o 0 O ~]
AL CUOUCUOUELOLELOLOLEUOUOULUILEUOULOLOUOU ﬁJ (@] ' 0
c e o » 8 o 5 o a6 06 0o 5 0 0o o o s o "
LouUEUNUSL L U B VOLOUSLOLOUBULOUOULOLOULOU '
5 o o5 o 6 o 0 0o o 6 o o o o o o o o -
0L HOLOLOLONOLOUOUNUOUOUOYALOUOUOLOULOY Y [
©c o 6 o o o6 o o o &6 0o o 0 o © o o o '
CUELOLOULOLOLOLOUOUOLOLOUELOLOUOLOUOUOU
=] c 2 o o ° o - o o o o o -] o L) o o o !
6LOLEUGLOLOUOLOLOVOUOL U VLOUOULOUBUBUOUL
© ©c o o o o 5 6 o6 b 5 56 ©6 ©6 0 © 0 0 O
6L OUOUOLOLOUOLOULOUOLOELOLOUBVLOLOUOU VOU
© o ©c o 0o 5 o o o o o 6 8 6 06 0 ©o ° ©
SO LOLOUOUSULOLEUOUOLOULOUOUOLOUCUOLOUOY
© o o 5 5 5 6 6 5 0o 6 6 0 0o o o © o ©
CUAULOULOUOVOUALOUBLOULOLOUOUOULUOLOUOUOUOU
5 ¢ o o 6 o 6 o o 5 6 0 © © 5 o o ©
L CLOLOLOYEULELOUOULALOBLOUOLOUOUOLOUOUOL
o 2 o o o 6 o o6 0o 6 © o © O o 6 o o
U ECLOLOLOUOUOULOUOULOVLOULOLEUOLOUOUOUOLOUY
c 6 6 6 o 0 o 6 5 6 0 o o o o o o o

o

CUOLEULOUVOULOUOUOUOLOLOUOUOUOUOULOUOLOLOUY

—
© o 0 6 060060 o000 o 6o oo o c . & |-
B B P A Vel o
AP AN PSS ISP DA IS
M MR S v Z
< - §
LOUTUCUOULUOUOUOUOUOUOUDUDUOUOUDUOULOLOLOL o
CTLTLTTLt T et yeee ey ue e evevey S @ - ®
vV U LU U VU U U U VU VU YU U U U U U U LU U -1tv a
=~ Z =
300000 LOULOLOLOLOUBUOLOLOLDLGGoGs G ey 6., o = O -] S
@) @ 3
v v LU U VU U U Y U U VU U U U U U U U U WU 2 c
5 5 6 o o 6 6 s e s e e es ety = Om ~ &
CoususuouououououaueuoveuauetLouo Lo ooy s 2 a, o 3
STttty ooy n eyt yeyeouey = o . o
A BN ~ « on O o
6 o 6 5 06 00 o0 o0 o o 6 e 6 e o e "~ b "
VOLOLOUOUOLOUODOLOUDUDUDUOUDOBULUBOUDUDUGUDOULOU e n r
5 © © o 5 5 05 06 06 6 6 0 6 06 0 0 0 0.6 do jo! = =
T Y S I & £ 2 X
5 o 6 06 0o 0o o6 0o o0 o0 o0 o0 0o 0o oo oo oy [
O G PR P O D S D O o < O
2 6 e © o 5 © 0 0o o 6 © © o o o o o Tl
coo 0 b L b b v o b oYY tetetuetes o o =
© 6 o o © © o6 © o6 o o © o © o0 o e c ot
Couseouesouecousesuoneotaneeneneuanan =3 i <
PP P PSS DDA S D o b=
LU L U LU L U U L L LoVoL L U U L U L o ~ y
2 &6 © © © o o 0 o o6 © © 6 o 6 o o o o o TL —t v 9
CoLsuLeUsUELOLEUELOUsUELEUS LB LE Lo Lo UGSy - g .2 Q e o v o
s e e oo eeetetatRt0tats ety = @ N I\ - AR
oo > o =
5 6 0 o 6 e e 6 e b e e sty ; o~] H
Cocen Cou — — 9 <
o 2 o . R
° 5 e ° e Vs 2 S %
s e s o .
:

0

o

o o

v ou

EEY

°o o

°
v
°

°

OUOULUOULOUDULOUOULOUOUOUOUDUOLOVOUO

°
v
°

°

o

© o o 0o © © o o ©o o o
v U L VU UL U U LU U UL oL
© o © © © o © o o o o

GLOUOULOLOUOUOUOUOUOUOUOULOUOULOUOUD

© © © o © © © © © o o o

Temperature kT/V(1) = 0.07. HB was varied from -10 to +40 in steps of 0.25. After each

1 the lattice was run for 6 million attempted s

2.DAT

figs.18

At this lower temperature the apparent phase changes at around HB

h a lower temperature run.

1t

gated wi

1S was 1nvesti

become more abrupt. Th

30

kT/V(1)=0.01

Temperature kT/V(1) = 0.01. HB was varied from -1 to +30 in steps of 0.1. After each
increment in driving potential the lattice was run for 6 million attempted site exchanges to
stabilise. All other comments as section 5.1.1.

KT =0.01 RUN 1 16/8/97 KT=0.01 RUN 1 16/8/97
30 30 ;
. e
w
25 . 25 i
|
|
20] 20 I
1
|
15 1 15 :
@ o :
T 10 T 10 i
I
I
5 5 :
|
I
o et P
I
|
-5 -5 L
0 01 02 03 04 05 06 07 08 09 1 -5 0 5 10 15 20 25
Concentration Mean Energy
fig 5.20 fig 5.21

As with the run at kT/V(1) = 0.07 there appears to be one or more phase changes above HB =
25.

5.1.4 Summary of Glauber Runs

High Temperatures:

The phase change diagram is dominated by an OI phase which is stable over a wide
range of driving potential. There is some evidence of a mixed OI/OII at a temperature below
this.

Medium Temperatures:

Again a stable OI phase dominates now over a greater range of driving potential.
However it appears that two additional phase changes occur below and above this region. The
lower potential changes appears to be when the OII region evolves into an OI lattice. The
upper phase change occurs as an OII region develops overlying the OI region.

Low Temperatures:

The upper and lower phases changes become more clearly defined and there is limited
evidence of further phase changes appearing. The central OI phase change is now stable over
an even greater range of chemical potential.

31

5.2 Attempts to monitor oxygen uptake as a function of Temperature

5.2.1 Glauber Dynamics

Glauber dynamics may not be the best model of atomic diffusion in this case but the
rapid times to equilibrium permit limited investigation of oxygen uptake.

A series of runs were performed to investigate potential correlations between oxygen uptake
and temperature. Summarised below in fig 5.22 - 5.25.

/ HB =-5 Time = 100,000

~

03

0.28

0.26

Concentration
o o
¢ o ¢ ¢
{ NN
NN I

o
-
(o]

0.16

0.14

0.12
0.01 0.02 0.03 0.04 005 006 007 0.08 0.09
KTIV(1)

0.1

/

fig5.22

/

o

Mean SiteEnergy

32}

-34F

361

38+

42}

-4.4

-4.6

HB =-5 Time = 100,000 \

-3

-4

0.01

002 003 004 005 006 007 0.08 C.09 0.1

KTIV(1) /

fig 5.23

This run was performed at a relatively low driving potential below that which favours
formation of the OI phase. Further runs carried out at higher potentials showed no discernible
features as the lattice rapidly settled into a stable OI phase.

The question arises of how to monitor oxygen uptake by the lattice. The experiments
detailed in the first part of this chapter (5.1) correlated the final 'settled' concentration of the
lattice against driving chemical potential using Glauber dynamics. Clear structures can be seen
indicative of some form of phase changes. There is probably insufficient data in these first
runs to extract relationships between final oxygen concentration and temperature at a range of

driving potentials.

Three questions arise

. How does oxygen uptake vary with time at fixed temperature and driving
potential?

. [s the equilibrium concentration of the lattice affected by temperature?

. Is Glauber dynamic a reasonable analogue of this situation or should Kawasaki

dynamics be employed?

Time constraints prevent detailed investigation of all three questions however I will attempt

some investigation of each.

32

5.2.2 Variation of Oxygen Concentration with Time using Kawasaki and Glauber Dynamics

Six runs were performed at a driving potential below that which favours formation of the
stable OI phase(HB = 0). Runs were performed at three different temperatures high,
intermediate and low using both Kawasaki and Glauber dynamics. The results presented
below.

kT/V(1) Glauber Kawasaki
High T 0.2
Medium T 0.07
Low T 0.01

The excessive time to settling using Kawasaki dynamics was reduced by increasing the
probability that the program would select an atom from within the heat bath to enter the lattice
rather than movement within the lattice. Run times were thus reduced by a factor of 10 to 100.

Glauber Dynamics Kawasaki Dynamaics

/ KT/V(1) =0.2 HB =0 \ KTA/(1) = 0.2 HB =0 \

<

0.4 08
0.35 05
04
03+ =
o
. Fad 5 :f
S o g 03t &
g 025 .0 g o
3 ° 8 K
5 ° 02F R
O o2t 1 e
° N
01 -
0.15 o
[}
0 100 1000 10000 100000 18406
- Log Time
100 1000 10000 100000 1e+0 ¢

Log Time j\ /
KTV(1) =0.07 HB =0 7 KT/V(1) = 0.07 HB =0 \

Ve

0.35 0.6
05F
03r
- 0.4 F
R
o 025F 3 c j
S -~ 2 k4
g R E o3} e
2 g °
o -® 3 °
g o2f . H o
o - © 92 -
. .
0.15 01 L
o
.
0.1 o
100 1000 10000 100000 1e+0 100 1000 10000 100000 1e+0

Log Time f Log Time J

-

\

Concentration

.

KTAV/(1)=0.01 HB =0

~

.
W
[

03

Q
N
[

e
N

0.15 1

0.6
’ 05+
°
s

kTNV(1) =0.01 HB =0

04 r

03

Concentration

02t

01 r

0.1
100

1000

10000
Log Time

100000

0
1e+0 100

AL

5.2.3 Summary

1000 10000

Log Time

100000 1e+0

/

Firstly there appears to be a difference between the final concentration of the lattices between
simulations using Glauber dynamics and Kawasaki dynamics. In the former case the
concentration settled at ~32% of the OII phase while in the latter figure was ~ 58%. In either
case there appeared little correlation between the temperature and final concentration.

kT/V(1) G: Final Conc |G: T to 25% Fill| K: Final Conc |K: T to 25% Fill
%o %
0.2 34 8x10° 59 45x10°
0.07 34 1x10* 55 5x10°
0.01 32 1x10* 56 4x10°

Direct comparison of rates between the two programs is inappropriate due the accelerated fill
techniques used in the Kawasaki program. However it is puzzling that the two programs settle
at such different concentrations and I am tempted to think that this is a computational artifact
arising from subtle differences between the two.

34

Conclusions

Two programs have been developed which simulate diffusion with a laminal lattice. These
programs have been extensively tested and are fairly well optimised. This was my first
extended software project and I have certainly learnt from mistakes. Almost two years were
wasted in developing and testing programs which proved to be based on sloppy consideration
of the physics. In addition the software developed rather than being strictly planned from the
outset. Whilst this form of development is probably typical for small projects it is far from
desirable. I now try to ensure that my computing students do not make the same mistake.

The programs generated phase diagrams which appeared to contain some interesting
structures with evidence of minor phase changes below and above the OII region. These
changes were consistent over a range of initial conditions.

An interesting phase was observed at very high concentrations where OI and OII regions lay
across each other. In retrospect this could have been predicted from consideration of the
inter-atomic interactions.

Unfortunately it has not been possible for me to relate my results to physical studies. This

would be a rather extended project though. I regret this as computational work in isolation is
unlikely to offer much insight in this field.

Suggestions for further work

The two programs could be merged into a single engine easily configurable by the user. This
should remove any artefacts caused by slight code differences and permit benchmark
comparisons between Kawasaki and Glauber dynamics as techniques for monitoring atomic
diffusion.

Attempts could be make to link the computational work with the experimental in an extended
study.

Ian Robinson April 1998

35

(1]

(2]

[3]

[4]

(3]

(6]

[7]

(8]

(]

References

A Monte-Carlo Study into the Oxygen Ordering Processes of the High Temperature
Superconductor Y, Ba, Cu, O,
Sean Pittaway

Introduction to Superconductivity and High T, Materials
M Cyrot, D Payuna

The use of Monte Carlo simulations in the study of a real lattice gas and its application
to the o Pd-D system

R A Bond D K Ross

J.Phys.F' Met. Phys. 12(1982) 597-609

Tracer and chemical diffusion of hydrogen in BCC metals
D A4 Faux, D K Ross

Model simulation study of the structural stability of oxygen order in the Y Ba,Cu,O,,
superconductor
JV Anderson, H Bohr, O G Mouritsen
Computational Materials Science 1992 p25-32

Structure Transformations in YBa,Cu,O,,, caused by oxygen ordering
S Semenovskaya, A G Khachaturyan
PhysicaD 1993 p205

studied by Monte Carlo simulation
T Figg, JV Anderson et al
PhysicaD 1993

Oxygen-ordering phenomena in YBa,Cu,0

6+x

Physics Review Letters 60, p1065 1988
Wille, Berera, De Fontaine

Proceedings of the Stanford Conference on Superconductivity, P Alto
P Stern
Physica C, 42, 165 (1989)

36

Appendix A
Appendix B

Appendix C

Appendix D

Appendix E

Appendices

Technical documentation
Technical documentation

Technical documentation

User Documentation

Program listings

Kawasaki.for
Glauber for

Histogram.for
Repitit.for

Appendix A

Technical documentation
Kawasaki.for and Glauber.for

Both programs simulate oxygen flow within a laminal lattice mimicking the basal planes of
YtBaCuO. The only difference being that Kawasaki permits only nearest neighbour exchanges
whilst Glauber allows them over arbitrary distance.

The programs simulate oxygen diffusion into the laminal planes of YBaCuO from an infinite
external heat bath. They start by setting up a virtual lattice in a 2d integer array. Fixed Copper
atoms are represented by the number -1 and (forbidden) cell centres as -10. Mobile oxygen
atoms are represented by +10. The user can randomly prefill the lattice to a required
concentration so as to reduce run times.

The programs pick a mobile oxygen at random, from within the lattice or the heatbath. Then
select a nearest neighbour site at random. If this is empty the oxygen atom's interaction
potentials with its nearest neighbours is summed. Then the oxygen is temporarily moved to the
proposed 'jumpto’ site and the interaction potentials again summed. If the proposed jump is
down an energy gradient it always proceeds. If it requires a rise in interaction potentials then
the jump may proceed but with a probability related to the energy rise required (see 'Jump'
below).

The programs record the mean site interaction energy and concentration along with their
standards deviations over the previous 100 jumps. They may also be configured to output
'snapshots' of the lattice at desired points throughout a run.

Kawasaki and Glauber are highly modular and the main body may be configured to

perform runs with varying or fixed chemical potentials of the heat bath (HB) or temperature
(KT/V(1)).

Program Modules

Main Setup Initialise
IniCu IniOxy Clearlatt
Picksite PickOxy Jumpto
Kinos SitexEnergy Pair
ELattice Jump Flow
Convert ChkLatt

Setup

Collects together user defined parameters for easy editing. These are the n.n
interaction values V{(1), V(2) and V{(3). The temperature k7 defined as faction of V(1) and the
Oxygen concentration as a fraction of a fully filled lattice (Conc).

Note: The lattice size cannot be manipulated here and is controlled by the parameter Z at the
beginning of the main body of the program.

Initialise

Prepares the lattice for a fresh run. Calls Clearlatt to erase all lattice data, particularly
when performing multiple runs. IniCu to set up the fixed Copper atoms and Populate which
randomly populates empty sites with Oxygen atoms to concentration Conc (C atoms).

Note: Initialise always calls the module Count_OX to determine the number of lattice sites
availible for oxygen occupancy. Thus saving the user the task of calculating the number of
free sites.

Kinos

Kinos is the core module of the program and simulates the movement of mobile atoms
around the lattice. Its somewhat awkward structure is an attempt to optimise handling of wrap
around and to deal with those atoms moving between the lattice and the external heat bath.
Kinos randomly chooses an oxygen atom using PickOxy determining its interaction energy
using SitexEnergy. Then Jumpto is called to pick a n.n site as the proposed destination. If
the destination is within the lattice the site is checked for a vacancy. The lattice is reset
assuming that the jump has occurred to permit calculation of the interaction energy at the
destination then Jump is called to determine whether or not a jump occurs.

If the destination is within the Heat bath (i or j = L+1) then the interaction energy is set
simply as HB.

SitexEnergy -
Determines the Site interaction energy. Sums V1), V(2) and V(3) interactions using

Pair to classify individual n.n interactions.

ELattice 4
Elattice returns the mean site interaction energy per oxygen atom. One would expect
this value to drop as the lattice configuration becomes more homogeneous and settles into a
lower energy configuration.

Jump
Jump decides whether or not a jump is to be allowed based upon the difference in

interaction energies at the source and destination site. Jumps to a lower energy site are always
allowed whilst those to a higher energy destination takes place with a probability exponentially

diminishing with increasing energy difference. The normalised jump probability is found from
AE/Kt
p=e

Chklatt
Checks the positions of oxygen atoms in the lattice against those stored in the array
Oxygens to check inconsistencies indicative of programming errors.

Convert
Generates a datafile containing a (crude) ASCII picture of the lattice with copper
atoms represented by the letter C and oxygen atoms by the letter O.

Global Variables

Lattice

Conc

Att

Act

MCC

Limit

Conc

KT

Elat

CvsHB

EvsHB

Type

Int 2d Array

Int

Int
Real
Int
Int
Int

Int

Real 1d array

Real

Real
Real

Real

Real

Description

L by L array representing lattice sites. Cu atoms are
represented by -1, each oxygen by a unique integer =>1
and empty sites by 0.

Parameter variable denoting linear dimension of array Lattice,
typically set to 100.

Number of Oxygen atoms within the lattice.

oxygen concentration as a fraction of fully filled lattice
Number of jump attempts

Number of successful jumps

Records time elapsed in Monte Carlo cycles

User defined cap on no of MCCs executed = length of run.

V(1),(2) and (3) store the pairwise oxygen interaction energies.

Oxygen concentration normalised w.r.t proportion of OIl
phase.

Temperature term.
Mean oxygen site energy.

Stores variation of concentration with variation in chemical
potential of the heat bath

Stores variation of mean site energy with variation on driving

~ chemical potential.

Kinos Routine

PICKOXY

Choose an Oxygen
atom at random

SITEXENERGY

determine its nn
interaction energy

l

JUMPTO
randomly choose a

nn site to jump to

the jumpfrom

within the heat
bath

?

No

Directly set site

to that of the heat
bath.

!

JumpfromHB

select a jumpto

site on the surface
of the lattice

Yes

v

Set site energy

directly to that
of the heat bath

the jumpto site

Yes

already occupied

SITEXENERGY
determine nn
interaction energy
if jump were to
oceur.

>
"
JUMP

jump is performed

or not depending on

difference in
intereaction energies

RETURN 1€

Appendix C

Technical documentation
Histogrm.For + Repitit.for

Histogrm.for
Histogram is a simple program which generates a random number (Q) in the range 1 to

100. This is converted into an integer and that element of the Results array is incremented by
one. The array Results is written to a datafile HResults.txt .

Main Variables
Type Description
N Int No of random numbers to be generated
P Int Random number in the range 1 to 100
Results Int 2d array stores histogram of random numbers generated

Reifit.

Repitit.for is slightly more complex than histogram. It generates N random numbers of
which the first 1000 are stored in the first row of a 2d array. The next 1000 numbers
generated are stored in the second row of the array. Subsequent random numbers are
generated individually and stored in the second row of the array in cyclic order. i.e.. the first is
placed at site 1, to second at site 2 and so on cycling back to position 1 at the end of the array.
Every time a new number is inserted at the end of the list the elements of the first row, the
initial string of 1000 numbers, are compared with those of the second row with element i of
the first row being compared with i + dX of the second where dX is the position of the last
new number inserted. this has the effect of comparing the first 1000 with the last 1000 numbers
generated. Any number pairs are classed as a correlation and a counter J is incremented.
Another counter Flag is used to store the length of the last common sequence. When a
dissimilar pair is found Flag is reset to zero. A counter MFlag stores the maximum value of
Flag and thus the maximum repeated sequence found in the entire run of N numbers.

Given the quantity of numbers generated it is impractical to store all of the J results. If J
exceeds an arbitrary value (in these runs 24) J and the total offset between the initial list and
the start of the current 1000 numbers are stored in an array ResultsA.

At the end of the run ResultsA is written to a datafile RepititA.txt. A note of the run
length and the value of MFlag are written to the file Flags.txt,

The program also generates a Histogram of the correlations (J values). this is written to a file
REPDISTB.txt .

Should no correlations be found above the threshold the nonsensical values -1,-1 are written
to RepititA.

P

J

Flag
Mflag
List
ResultsA

Distrib

Int
Int
Int
Int
Int
Int 1d array
Int 1d array

Int 1d array

Main Variables

Description

No of random numbers to be generated
Random number in the range 1 to 100

No of number pairs found

Length of last repeated sequence

Length of maximum repeated sequence
Stores sequence of 2000 random numbers
Stores correlations vs dX (offset)

Stores histogram of correlations

Appendix D

User Documentation

Glauber.For

As with Kawasaki.for Glauber may be configured for two types of investigation, the
measurement of diffusion rate against the driving chemical potential of the heat bath at fixed
temperature or the measurement of diffusion rate against temperature at fixed driving
potential. Unlike Kawasaki it is impractical to measure both in a single run on a workstation
owing to the computational load.

Changing the size of the lattice is performed by changing the parameter value L in line 9 to
generate an L*L lattice.

The loop statement on line 25 may be altered to produce a series of runs at differing
values of chemical potential (HB) or differing temperatures (kT). The length of a run is
controlled by two nested loop statements on lines 29 and 33. That on line 33 controls the run
time between readings whilst that on 29 controls to number of readings to be taken with an
upper limit of 10,000.

Three data files are generated;
CvsHB.dat lists driving chemical potential against final concentration and its standard
deviation over the last 10 readings.

EvsHb.dat lists chemical potential against mean site interaction energy and its standard
deviation over the last 10 readings.

Picture.txt stores an ASCII representation of the lattice at the end of the runs.

For a configuration of varying temperature the data written to these needs to be altered. Line
51 should read CvsHB(run,1) = kT and line 54 EvsHB(run,1) =kT.

Histogram.For
The only value a user is likely to wish to enter is that of the number of random values
to be generated which is controlled by the variable N on line 14.

Repitit.For
A user is only likely to wish to change two parameters here, the number of random

values to be generated and the arbitrary threshold above which a discrete record is kept of
correlations vs distance from the initial list.

The variable N on line 18 describes the length of the run in numbers to be generated.

The threshold value is contained within the IF(....) statement on line 75. One expects to see an
average of 10 correlations per sequence and the default threshold is 24 correlations.

if)

iii)

Appendix E

Program Listings

Kawasaki.for
Glauber.for
Histogram.for

Glauber.for

KAWASAKILFOR

T o T I L L o S
A program to simulate oxygen diffusion into the Cu-O Iaminal

planes of YBaCuO using Kawasaki dynamics (n.n neighbour jumps only).

e o B B e 2 B A o o N VA SNBSS B S S S S
MAIN:

o o0 o000 000

INTEGER L
¢ 1=unit cell dimensions ((n*3)-1)
PARAMETER (L = 50)

INTEGER LATTICE(L,L),0X,X,Y,RUN
REAL KT,HB,V(3),ENERGY(1000,2),Cresults(1000,2), Emean, CONC
REAL CvsHB(1000,3),EvsHB(1000,3),Efinal,Cfinal, ESD,CSD

REAL GO5SDAF
EXTERNAL GO5DAF

RUN=0

CALL SETUP(V,KT,CONC)
CALL INITIALISE(LATTICE,L,O0X,CONC,V,KT)

HB =10

¢ run the lattice for a while in the initial state to stabilise it
5 DO 7 X = 1,10000000

CALL KINOS(LATTICE,L,V KT, HB)
7 CONTINUE

¢ this particular configuration varies the chenical potential of the
heat bath (HB) whilst keeping the temperature constant.

DO 50 HB = 26.5,29.5,0.02
run is used to space the sampling ..see line labelled 46..
RUN = RUN+ 1

10 DO 11 X = 1,9900
CALL KINOS(LATTICE,L,V,KT,HB)
1 CONTINUE

c final 100 runs to calculate means + msd's of results
12 DO 45 X =1,100
CALL KINOS(LATTICE,L,V,KT,HB)
CALL COUNT(LATTICE,L,0X,CONC)
Cresults(X,1) =X
Cresults(X,2) = CONC

CALL MEANENERGY(LATTICE,L,Emean KT, V)
ENERGY(X,1)=X
ENERGY(X,2) = Emean

45 CONTINUE

¢ calculate mean conc + energy (+msd's) over last 100 jump attemps
CALL FINALENERGY (ENERGY Efinal ESD,X)
CALL FINALCONC(Cresults,Cfinal,CSD,X)

c
46

50

store the final energy,conc and their sd's in the two data arrays
CvsHB(RUN,1) = HB

CvsHB(RUN,2) = Cfinal

CvsHB(RUN,3) = CSD

EvsHB(RUN,1) = HB

EvsHB(RUN,2) = Efinal

EvsHB(RUN,3) = ESD

call up the routines to output images of the lattice
best to use the integer RUN rather than an [F equality containing
the real no's HB or temperature KT.
IF (RUN.EQ.1) THEN

CALL CONVERTO(LATTICE,L)
ENDIF
IF (RUN.EQ.20) THEN

CALL CONVERTI(LATTICE,L)
ENDIF
IF (RUN.EQ.21) THEN

CALL CONVERT2(LATTICE,L)
ENDIF
IF (RUN.EQ.22) THEN

CALL CONVERT3(LATTICE.L)
ENDIF
IF (RUN.EQ.24) THEN

CALL CONVERT4(LATTICE,L)
ENDIF
IF (RUN.EQ.65) THEN

CALL CONVERTS(LATTICE,L)
ENDIF
IF (RUN.EQ.70) THEN

CALL CONVERT6(LATTICE,L)
ENDIF
IF (RUN.EQ.75) THEN

CALL CONVERT7(LATTICE,L)
ENDIF
IF (RUN.EQ.80) THEN

CALL CONVERTS8(LATTICE,L)
ENDIF
IF (RUN.EQ.281) THEN

CALL CONVERT9(LATTICE,L)
ENDIF

CONTINUE

output conc and energy results to two data files
CALL RESULTS(CvsHB,EvsHB,RUN)

END

subroutine to initialise user defined parameters
SUBROUTINE SETUP(V,KT,CONC)
REAL V(3),KT,CONC

set n.n interaction parameters
V(1) =6.90

V(2)=-2.40

v(3)=1.10

set temperature (if not varying in the main loop above)
KT = V(1)*0.01

set initial concentration .. usefull for long low-temperature runs
Conc = 0.00

RETURN
END

subroutine to clear and initialise the lattice array
SUBROUTINE INITIALISE(LATTICE,L,0X,CONC,V,KT)
INTEGER LATTICE,L,0X
REAL CONC,V(3),KT

empty the lattice array
CALL CLEARLATT(LATTICE,L)

add fixed copper atoms
CALL INICU(LATTICE,L)

count the number of intersitial sites (max no of oxygens)
CALL COUNT_OX(LATTICE,L,0X)

prepopulate lattice to initial concentration 'conc'
CALL POPULATE(LATTICE,L,0X,CONC)

RETURN
END

subroutine to delete contents of lattice
SUBROUTINE CLEARLATT(LATTICE,L)
INTEGER L,LATTICE(L,L),I,J

clears the lattice
DO 130I=1L
DO 120J=1LL
LATTICE(J)=0
CONTINUE

130 CONTINUE

RETURN
END

subroutine to initialise the copper atoms and block cell
centers

SUBROUTINE INICU(LATTICE,L)
INTEGER L,LATTICE(L,L),LJ

c setting the cu atoms (as -1), row by row

DO20J=1L2
DO101I=1L2

LATTICE(J) = -1
10 CONTINUE .

20 CONTINUE
c setting the site centres as (-10)
DO40J=2,L,2
DO30I=2L,2

LATTICE(LJ) = -10
30 CONTINUE
40 CONTINUE

RETURN
END

O

C subroutine to count the number of interstitial sites
SUBROUTINE COUNT_OX(LATTICE,L,0X)
INTEGER L,LATTICE(L,L),0X,LJ

¢ ox is the total no of sites for mobile oxygens within the lattice
0X=0

DO40J=1L
DO 301=1L
IF (LATTICE(L,J).GT.-1) THEN
OX=0X+1
ENDIF

30 CONTINUE
40 CONTINUE

RETURN
END

& ——
¢ subroutine to randomly populate the lattice to concentration CONC
SUBROUTINE POPULATE(LATTICE,L,0X,CONC)
INTEGER L,0OX,LATTICE(L,L),N,I,.J A
REAL CONC
REAL GO5DAF

¢ n=no of oxygens required for concentration of 'conc'
¢ a=no of oxygens placed so far

N = INT(CONC*0X)
A=0

¢ randomly pick a site using subroutine picksite
110 CALL PICKSITE(L,LJ)

¢ test for out of range values as picksite can select a site within
c the heat bath '
IF(I.GT.(L).OR.ILT.1.0R.J.LT.1.0R.J.GT.(L)) THEN

GOTO 110
ENDIF

¢ if site is vacant then place an oxygen
IF (LATTICE(LJ).EQ.0) THEN
LATTICE(L)) =10
A=A+1
ENDIF

IF(A.LT.N) THEN
GOTO 110
ENDIF

RETURN
END

c subroutine to move the atoms
SUBROUTINE KINOS(LATTICE,L,V,KT,HB)
INTEGER L,LATTICE(L,L),I,J,P,Q
REAL V(3),E1,E2,ESITE KT,HB
REAL GO5SDAF

¢ 1i,j are the coordinates of the jumpfrom site
¢ p.q are the coordinates of the jumpto site
Ei=0.0
E2=0.0
ATT = ATT+1

CALL PICKOXY(LATTICE,L,LJIFAIL)
¢ if jump is from h:b then set energy as kt directly,call jumpfromhb
IF(I.LT.1.0R.I.GT.L.OR.J.LT.1.O0R.J.GT L) THEN
El1=HB
CALL JUMPFROMHB(LATTICE,L,LJ.P,Q)
GOTO 305
ENDIF
c determine energy of 1st site
CALL SITEXENERGY (LATTICE,L,LJLE1,VKT)
301 CALL JUMPTO(LATTICE,L,LI,P,Q)

c test whether jump is into heatbath or sink and set e2 directly
IF(P.LT.1.ORP.GT.L.OR.Q.LT.1.OR.Q.GT.L) THEN

E2 =HB
GOTO 310
ENDIF
c test for vacancy at jumpto site
305 IF(LATTICE(P,Q).NE.0) THEN
GOTO 390
ENDIF
c reset lattice as if jump has occured before calculating €2

LATTICE(P,Q) = 10

¢ if jump from hb no need to set hb site to zero (outside lat range)
IFI.LT.1.0OR.I.GT.L.OR.JLT.1.0OR.J.GT.L) THEN

CALL SITEXENERGY (LATTICE,L,P,Q,E2,V.KT)
LATTICE(P,Q) = 0
GOTO 310

ENDIF

LATTICE(L)) = 0
CALL SITEXENERGY(LATTICE,L,P,Q,E2,V,KT)
LATTICE(L]) = 10
LATTICE(P,Q) = 0

310 CALL JUMP(LATTICE,L KT,LJP,Q.E1 E2)

390 RETURN

[¢]

C

END

subroutine to perform the jump (or not)
SUBROUTINE JUMP(LATTICE,L,KT,I,J,P,Q,E1,E2)
INTEGER L,LATTICE(L,L),1,J,P,Q
REAL E1,E2, R,PROB,KT,DE
REAL GOSDAF

DE =EI1-E2
if dE >= 0 then jump
IF(dE.GE.-0.001) THEN
GOTO 510
ENDIF

R = GO5DAF(0.,1.)
PROB = EXP(dE/(KT))
as dE becomes more negative, prob decreases hence jump
likelyhood dereases.
IF(PROB.GE.R) THEN
GOTO 510
ENDIF
no jump so return

GOTO 520

do jump

510 ACT=ACT+1

reset lattice (if i,j or p,q are within it and not in h:b)

IF I.LT.1.ORIL.GT.L.OR.JLT.1.0R.J.GT.L) THEN
GOTO 515

ENDIF

LATTICE(D =0

515 IF(P.LT.1.ORP.GT.L.OR.Q.LT.1.OR.Q.GT.L) THEN

GOTO 520
ENDIF
LATTICE(P,Q) = 10

520 RETURN

END

subroutine to sum a site's pairwise interaction energy
SUBROUTINE SITEXENERGY (LATTICE,L,LJESITE,V,KT)
INTEGER L,LATTICE(L,L),L1,X,Y,NN
REAL ESITE,V(3).KT

ESITE=0.0
L,],p,q are all in the range 1:L

***for oxygens at edge of lattice PAIR assumes that nn oxygen
interactions occur only within the lattice (cf: surface tension)
sum V(1) terms

NN=0

X=1+1
Y=J+1
CALL PAIR(LATTICE,L,I,J,X,Y,NN)

X=1+1
Y=J-1
CALL PAIR(LATTICE,L,LJ.X,Y,NN)

X=1-1
Y=1+1
CALL PAIR(LATTICE,L,LJ.X,Y NN)

X=1-1
Y=J-1
CALL PAIR(LATTICE,L,LJ,X,Y,NN)

ESITE = ESITE + (V(1)*NN)

sum V(2) terms
NN=0

look for nn copper atoms
X=1+1
Y=1J]
IF(X.GT.L) THEN
X=1
ENDIF
IF (LATTICE(X,Y).EQ.-1) THEN
nn =cu
X=1+2
CALL PAIR(LATTICE,L,LJX,Y,NN)
ENDIF

X=1I-1
Y=17
IF(X.LT.1) THEN

X=L
ENDIF
IF (LATTICE(X,Y).EQ.-1) THEN

nn=cu

X=1-2

CALL PAIR(LATTICE,L,LJ,X,Y,NN)
ENDIF

X=1
Y=J+1
IF (Y.GT.L) THEN

Y=1
ENDIF
IF (LATTICE(X,Y).EQ.-1) THEN

nmn=cu

Y=7+2

CALL PAIR(LATTICE,L,1,J,X,Y,NN)
ENDIF

X=1
Y=7-1
IF (Y.LT.1) THEN

Y=L
ENDIF
IF (LATTICE(X,Y).EQ.-1) THEN

nn-=cu

Y=1-2

CALL PAIR(LATTICE,L,LJ,X,Y,NN)
ENDIF

ESITE = ESITE + (V(2)*NN)

sum V(3) terms
NN=0

X=1+1
Y=]
IF (X.GT.L) THEN

X=1
ENDIF
IF (LATTICE(X,Y).EQ.-10) THEN

nn = site centre

X=1+2

CALL PAIR(LATTICE,L,LJ, X,Y,NN)
ENDIF

X=I-1
Y=]
IF (X.LT.1) THEN

X=L
ENDIF
IF (LATTICE(X,Y).EQ.-10) THEN

nn = site centre

X=1-2

CALL PAIR(LATTICE,L,L.1.X,Y NN)
ENDIF

X=1

Y=I+1

IF (Y.GT.L) THEN
Y=1

ENDIF

IF (LATTICE(X,Y).EQ.-10) THEN
nn = site centre
Y=J+2
CALL PAIR(LATTICE,L,LI,X,Y,NN)

ENDIF

X=1
Y=J-1
IF (Y.LT.1) THEN
Y=L
ENDIF
IF (LATTICE(X,Y).EQ.-10) THEN
¢ nn = site centre
Y=J]-2
CALL PAIR(LATTICE,L,LJ,X,Y,NN)
ENDIF

ESITE = ESITE + (V(3)*NN)

150 RETURN
END
c subroutine to identify o=0 pairs

SUBROUTINE PAIR(LATTICE,L,LJ,X,Y,NN)
INTEGER L,LATTICE(L,L),L,J,X,Y,NN

¢ simply looks at lattice(i,j) and lattice(x,y) and returns nn=nn+1
if O=O0 pair and nn=nn for all others

2 possible configurations

1) assumes nn interactions occur solely within lattice this
causes a 'surface tension' effect

2) assumes nn interactions can occur between lattice and hb
no surface tension, runs faster at low temps

o ¢ I TN ¢ N o]

¢ test for nn within hb
IF(X.LT.1.OR.X.GT.L.OR.Y.LT.1.OR.Y.GT.L) THEN

120 nn outside lattice (abort)

130 GOTO 195

(el o]

¢ next line allows interactions between oxygens within the lattice
¢ and those within the hb

140 if (lattice(i,j).eq.10) then

150 nn=nn+1

160 ENDIF
ENDIF

c test if both atoms are an oxygen
IF(LATTICE(,J).GT.0.AND.LATTICE(X,Y).GT.0) THEN
NN=NN+1
c 0=0 pair
ENDIF
195 RETURN
END

SUBROUTINE PICKOXY(LATTICE,L,LJ)
INTEGER L,LATTICE(L,L),1,J
REAL GO5DAF

210 CALL PICKSITE(L,L))

c if i,j are within h:b then = oxygen by default
IF I.LT.1.0R.I.GT.L.OR.J.LT.1.0R.J.GT.L) THEN
GOTO 220
ENDIF

c check if the site contains an oxygen, if not recall picksite
IF (LATTICE(L,J).LT.1) THEN
GOTO 210
ENDIF

220 RETURN
END

c subroutine to pick an atom (or site) at random
SUBROUTINE PICKSITE(L,LT)
INTEGER I,J,L
REAL GO5DAF

c generates rnd in the range 0=(L+1)
10 T=INT(GOSDAF(0.,1.)*(L+2))
J = INT(GO5SDAF(0.,1.)*(L+2))

c test for out of range values
IF(I.GT.(L+1).OR.LLT.0.0OR.J.LT.0.OR.J.GT.(L+1)) THEN
GOTO 10
ENDIF

RETURN
END

c subroutine to propose a landing site at random
SUBROUTINE JUMPTO(LATTICE,L,LI.P,Q)
INTEGER L,LATTICE(L,L),LLI,P,Q,X
REAL R
REAL GO5DAF

P=1

Q=J
c picking a direction at random
first two lateral/vertical jump vectors are dependant upon
c the oxygens position vis a vis the coppers

9]

¢ wraps around when determining whether i=1 n.n is a copper atom
X=11
IF (X.LT.1) THEN
X=L-X
ENDIF

R = GO5DAF(0.,6.)
IF (RLT.1.0) THEN
IF (LATTICE(X,J).EQ.-1) THEN
P=1I
Q=J+2

ELSE
P=1+2
Q=17
ENDIF
ELSE IF(R.LT.2.0) THEN
IF(LATTICE(X,]).EQ.-1) THEN

ELSE IF (R.LT.3.0) THEN

P=1+1
Q=J+1
ELSE IF (R.LT.4.0) THEN
P=1+1
Q=71
ELSE IF (R.LT.5.0) THEN
P=11
Q=J+1
ELSE
P=1I1
Q=11
ENDIF
RETURN

END

subroutine to propose a landing site at random
SUBROUTINE JUMPFROMHB(LATTICE,L,II,P,Q)
INTEGER L,LATTICE(L,L),LJ,.P,Q,X
REAL R
REAL GO5DAF

check whether the i,j are at the lattice corners=only 1 jumpto
site availible
IF(LLT.1.AND.J.LT.1) THEN
P=1
Q=1
GOTO 410
ELSE IF(LLT.1. AND.J.GT.L) THEN
P=1
Q=L
GOTO 410
ELSE IF(I.GT.L.AND.JLT.1) THEN
P=L
Q=1
GOTO 410
ELSE IF(I.GT.L.AND.J.GT.L) THEN
P=L
Q=L
GOTO 410

ENDIF

picking a direction at random
if the jump is from within the hb subroutine picks a jumpto site
from one of the 3 nn within the lattice

R = GOSDAF(0.,3.)

IF(LLT.1) THEN
IF(R.LT.1.0) THEN
P=1+1
Q=J+1
ELSE IF (R.LT.2.0) THEN
P=1I+1
Q=]

ELSE
P=1I+1
Q=1J-1
ENDIF
ENDIF

IF(I.GT.L) THEN
IF(R.LT.1.0) THEN
P=1I-1
Q=J+1
ELSE IF(R.LT.2.0) THEN
P=1I-1
Q=7
ELSE
P=1I-1
Q=1J1
ENDIF
ENDIF

IF(J.LT.1) THEN
IF(R.LT.1.0) THEN
P=1I+1
Q=J+1
ELSE IF(R.LT.2.0) THEN
P=1I
Q=J+1
ELSE
P=1I-1
Q=J+1
ENDIF

ENDIF

IF(J.GT.L) THEN
IF(R.LT.1.0) THEN
P=1I+1
Q=1J1
ELSE IF(R.LT.2.0) THEN
P=1I
Q=1J-1
ELSE
P=1-1
Q=1J-1
ENDIF

ENDIF

410 RETURN
END

c subroutine to determine mean oxygen atom site energy
SUBROUTINE MEANENERGY (LATTICE,L,Emean,KT,V)
INTEGER L,LATTICE(L,L),I,J,N
REAL Emean,ESITE KT, V(3)

¢ n=no of oxygens
sume = total site=energy of oxygens
¢ Emean = mean site energy of oxygens

o

Emean = 0.00
SUME = 0.00
N=0

DO 6201=3,L-3
DO 610 J = 3,L-3
IF (LATTICE(LJ).EQ.10) THEN
N = N+1
CALL SITEXENERGY(LATTICE,L,I,J,ESITE,V,KT)
SUME = SUME + ESITE
ENDIF
610 CONTINUE
620 CONTINUE

IF(N.LT.1) THEN
Emean = 0.00

ELSE

Emean = SUME/REAL(N)
ENDIF

RETURN
END

¢ S
subroutine to calculate the mean value of mean site energy
¢ and its standard deviation over the last 10 runs
SUBROUTINE FINALENERGY(ENERGY,Efinal, ESD,Y)
REAL ENERGY(1000,2),Efinal ESD,SUM,DEV
INTEGER Y, X
SUM = 0.00
DEV = 0.00

DO 750 X = 1,100
SUM = SUM + ENERGY(X,2)
750 CONTINUE
Efinal = SUM/100.00

DO 760 X= 1,100
DEV = DEV + ((Efinal-ENERGY (X,2))**2)
760 CONTINUE

ESD = SQRT(DEV/100.00)

RETURN
END

c ===
c subroutine to calculate the mean value of the conc and its
¢ standard deviation over the last 10 runs

SUBROUTINE FINALCONC(Cresults,Cfinal,CSD,Y)

REAL Cresults(1000,2),Cfinal, CSD,SUM,DEV

INTEGER Y, X

SUM = 0.0

DEV=10.0

DO 850 X = 1,100
SUM = SUM+Cresults(X,2)
850 CONTINUE

Cfinal = SUM/100.00

DO 860 X = 1,100
DEV = DEV + ((Cfinal - Cresults(X,2))**2)
860 CONTINUE
CSD = SQRT(DEV/100.0)

RETURN
END

PA—
subroutine to store the resulits arrays CvsHB and EvsHB in
¢ two data files c.txt and e.txt.

SUBROUTINE RESULTS(CvsHB,EvsHB,RUN)

REAL CvsHB(1000,3), EvsHB(1000,3)

INTEGER RUN,X

]

OPEN (UNIT = 6,FILE = 'C1.DAT' STATUS = 'NEW')
OPEN (UNIT = 7,FILE = 'E1.DAT',STATUS = 'NEW")

DO 910 X = 1,RUN
WRITE(6,980)CvsHB(X, 1),CvsHB(X,2), CvsHB(X,3)
WRITE(7,990)EvsHB(X, 1), EvsHB(X,2), EvsHB(X,3)

910 CONTINUE

CLOSE(6)
CLOSE(7)

980 FORMAT(1X,F16.4,5X,F7.4,5X,F6.5)
990 FORMAT(1X,F16.4,5X,F7.4,5X F6.5)
RETURN
END

C e ——

¢ subroutine to check the positions of the copper atoms
SUBROUTINE CHKLATT(LATTICE,L,IFAIL)
INTEGER L,LATTICE(L,L),IFAIL,LJ

PRINT *'CHECKING POSITIONS OF COPPERS AND BLOCKED CELL CENTRES'
DO620J=1.L2

DO610I=1L2
IF (LATTICE(LJ).NE.-1) THEN
IFAIL = 4
print *,'chklatt copper error at ',i,j,' = 'lattice(i,j)
ENDIF
610 CONTINUE
620 CONTINUE

DO 640T=2]1,2
DO6301=2,L,2
IF (LATTICE(LJ).NE.-10) THEN
IFAIL =4
print * 'chklatt centre error at ',i,j,' = 'lattice(i,j)
ENDIF
630 CONTINUE
640 CONTINUE
RETURN
END

c subroutine to count the no of oxygen atoms within the lattice
SUBROUTINE COUNT(LATTICE,L,0X,CONC)
INTEGER L,LATTICE(L,L),I,J,OX,N
REAL CONC

N=0

DO7301=1L

DO720J=1L

IF (LATTICE(LJ).GT.0) THEN
N=N+1

ENDIF

720 CONTINUE
730 CONTINUE
c conc is expressed as a fraction of a fully filled lattice
c i.e conc of OI phase is 0.5
CONC = (REAL(N)/REAL(OX))

RETURN
END

c subroutine to save lattice array to a pretty picture in
c an external ascii file

SUBROUTINE CONVERTO(LATTICE,L)
INTEGER L,LATTICE(L,L),LJ
CHARACTER*1 PICTURE(50,50)

DO 5201=1,L

DO510T=1L

IF (LATTICE(LJ).EQ.-10) THEN
PICTURE(LJ) ="'

ELSE IF (LATTICE(L,J).EQ.-1) THEN
PICTURE(LJ) = 'C'

ELSE IF (LATTICE(LJ).EQ.0) THEN
PICTURE(LJ) ="'

ELSE IF (LATTICE(LJ).GT.0) THEN

PICTURE(,J) ="0'
ENDIF
510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE =PIC_0.TXT',STATUS='NEW")
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(A1))
RETURN
END

¢ subroutine to save lattice array to a pretty picture in
c an external ascii file

SUBROUTINE CONVERT1(LATTICE,L)
INTEGER L,LATTICE(L,L),LJ
CHARACTER*1 PICTURE(50,50)

DO5201=1L
DO510T=1L
IF (LATTICE(LJ).EQ.-10) THEN
PICTURE(,]) =""
ELSE IF (LATTICE(LJ).EQ.-1) THEN
PICTURE(L]) = 'C'
ELSE IF (LATTICE(LJ).EQ.0) THEN
PICTURE(LJ) ="'
ELSE IF (LATTICE(LJ).GT.0) THEN
PICTURE(L]) = '0'
ENDIF
510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE ='PIC_1.TXT",STATUS="NEW")
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(A1))
RETURN
END

(o]

subroutine to save lattice array to a pretty picture in
c an external ascii file

SUBROUTINE CONVERT2(LATTICE,L)
INTEGER L,LATTICE(L,L),1,J
CHARACTER*1 PICTURE(50,50)

DO5201=1L

DO510J=1L

IF (LATTICE(LJ).EQ.-10) THEN
PICTURE(L]) ="

ELSE IF (LATTICE(LJ).EQ.-1) THEN
PICTURE(L]) = 'C'

ELSE IF (LATTICE(],J).EQ.0) THEN
PICTURE(L]) ="'
ELSE IF (LATTICE(LJ).GT.0) THEN
PICTURE(L]) = 'O'
ENDIF
510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE ='PIC_2.TXT',STATUS="NEW")
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(A1))
RETURN
END

c subroutine to save lattice array to a pretty picture in
c an external ascii file

SUBROUTINE CONVERT3(LATTICE,L)
INTEGER L,LATTICE(L,L),I,J
CHARACTER*1 PICTURE(50,50)

DO 5201=1L
DO510T=1L
IF (LATTICE(I,J).EQ.-10) THEN
PICTURE(L]) =""
ELSE IF (LATTICE(LJ).EQ.-1) THEN
PICTURE(L]) = 'C'
ELSE IF (LATTICE(I,J).EQ.0) THEN
PICTURE(LJ) ="'
ELSE IF (LATTICE(LJ).GT.0) THEN
PICTURE(L]) = 'O'
ENDIF
510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE ='PIC_3.TXT',STATUS='NEW')
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(A1))
RETURN
END

c subroutine to save lattice array to a pretty picture in
an external ascii file

SUBROUTINE CONVERT4(LATTICE,L)
INTEGER L,LATTICE(L,L),L,J
CHARACTER*1 PICTURE(50,50)

DO5201=1L

DO5107=1L

IF (LATTICE(LJ).EQ.-10) THEN
PICTURE(L]) ="'

ELSE IF (LATTICE(LJ).EQ.-1) THEN
PICTURE(LJ) = 'C'
ELSE IF (LATTICE(LJ).EQ.0) THEN
PICTURE(LJ) ="'
ELSE IF (LATTICE(LJ).GT.0) THEN
PICTURE(LJ) = 'O'
ENDIF
510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE =PIC_4.TXT',STATUS="NEW")
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(A1))
RETURN
END

¢ subroutine to save lattice array to a pretty picture in
o an external ascii file

SUBROUTINE CONVERTS5(LATTICE,L)
INTEGER L,LATTICE(L,L),LJ
CHARACTER*1 PICTURE(50,50)

DO520I=1L
DO510J=1L
IF (LATTICE(LJ).EQ.-10) THEN
PICTURE(L]) ="'
ELSE IF (LATTICE(LJ).EQ.-1) THEN
PICTURE(L]) = 'C'
ELSE IF (LATTICE(LJ).EQ.0) THEN
PICTURE(LJ) ="
ELSE IF (LATTICE(LJ).GT.0) THEN
PICTURE(LJ) = 'O'
ENDIF
510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE ='PIC_5.TXT',STATUS='NEW")
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(A1))
RETURN
END

c
¢ subroutine to save lattice array to a pretty picture in
c an external ascii file

SUBROUTINE CONVERT6(LATTICE,L)
INTEGER L,LATTICE(L,L),I,J
CHARACTER*1 PICTURE(50,50)

DO5201=1L
DO510J=1L

IF (LATTICE(L,J).EQ.-10) THEN
PICTURE(L]) =""
ELSE IF (LATTICE(LJ).EQ.-1) THEN
PICTURE(L]) = 'C'
ELSE IF (LATTICE(LJ).EQ.0) THEN
PICTURE(LJ) ="
ELSE IF (LATTICE(LJ).GT.0) THEN
PICTURE(L]) = 'O'
ENDIF
510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE ='PIC_6.TXT',STATUS="NEW")
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(A1))
RETURN
END

¢ subroutine to save lattice array to a pretty picture in
c an external ascii file

SUBROUTINE CONVERT7(LATTICE,L)
INTEGER L,LATTICE(L,L),LJ
CHARACTER*1 PICTURE(50,50)

DO 5201=1,L
DOS510T=1,L
IF (LATTICE(L,J).EQ.-10) THEN
PICTURE(L]) ="'
ELSE IF (LATTICE(LJ).EQ.-1) THEN
PICTURE(L]) = 'C"
ELSE IF (LATTICE(LJ).EQ.0) THEN
PICTURE(LJ) ="'
ELSE IF (LATTICE(L,J).GT.0) THEN
PICTURE(LJ) = 'O'
ENDIF
510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE ='PIC_7.TXT',STATUS="NEW")
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(A1))
RETURN
END

¢ subroutine to save lattice array to a pretty picture in
c an external ascii file

SUBROUTINE CONVERTS(LATTICE,L)
INTEGER L,LATTICE(L,L),1,J
CHARACTER*1 PICTURE(50,50)

DO5201=1,L
DO5107=1,L
IF (LATTICE(LJ).EQ.-10) THEN
PICTURE(L]) ="
ELSE IF (LATTICE(LJ).EQ.-1) THEN
PICTURE(L])) = 'C'
ELSE IF (LATTICE(L]J).EQ.0) THEN
PICTURE(L]) =""
ELSE IF (LATTICE(LJ).GT.0) THEN
PICTURE(L)) = 'O'
ENDIF
510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE ='PIC_8.TXT',STATUS="NEW")
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(A1))
RETURN
END

¢ subroutine to save lattice array to a pretty picture in
c an external ascii file

SUBROUTINE CONVERT(LATTICE,L)
INTEGER L,LATTICE(L,L),,J
CHARACTER*1 PICTURE(50,50)

DO 520I=1L
DO510J=1,L
IF (LATTICE(I,J).EQ.-10) THEN
PICTURE(LJ) ="
ELSE IF (LATTICE(LJ).EQ.-1) THEN
PICTURE(LJ) = 'C'
ELSE IF (LATTICE(LJ).EQ.0) THEN
PICTURE(L]) ="'
ELSE IF (LATTICE(LJ).GT.0) THEN
PICTURE(L]) = 'O'
ENDIF
510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE ="PIC_9.TXT',STATUS="NEW’)
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(A1))
RETURN
END

c

C function to permit compiling on a pc running salford fortran77
REAL FUNCTION G05DAF(A,B)
REAL AB,X
REAL *4 FUNCTION RANDOM(Z)

INTEGER *4Z

X = RANDOM(0)

GOSDAF = (RANDOM(0)*B)
RETURN

END

GLAUBER.FOR

I o o B
A program to simulate oxygen diffusion into the Cu-O laminal

planes of YBaCuO using Glauber dynamics (jumps over arbitary distance)

and record variation of

oxygen concentration and E (mean site interaction energy) against

chenical potential of the surrounding heat bath.

B R L L A s ST SIS
MAIN:

O 000000000

INTEGER L
¢ 1= unit cell dimensions ((n*3)-1)
PARAMETER (L = 50)

INTEGER LATTICE(L,L),0X,X,Y,RUN
REAL KT,HB,V(3),ENERGY(1000,2),Cresults(1000,2), Emean, CONC
REAL CvsHB(1000,3),EvsHB(1000,3),Efinal,Cfinal, ESD,CSD

REAL GO5SDAF
EXTERNAL GOSDAF

RUN=0

CALL SETUP(V,KT,CONC)
CALL INITIALISE(LATTICE,L,0X,CONC,V,KT)

HB =10

¢ run the lattice for a while in the initial state to stabilise it
5 DO 7 X =1,10000000

CALL KINOS(LATTICE,L,V,KT,HB)
7 CONTINUE

¢ this particular configuration varies the chenical potential of the
¢ heat bath (HB) whilst keeping the temperature constant.

DO 50 HB = 26.5,29.5,0.02
¢ runis used to space the sampling ..see line labelled 46..
RUN= RUN+1

10 DO 11 X =1,9900
CALL KINOS(LATTICE,L,V,KT,HB)
11 CONTINUE

c final 100 runs to calculate means + msd's of results
12 DO 45 X=1,100
CALL KINOS(LATTICE,L,V KT ,HB)
CALL COUNT(LATTICE,L,0X,CONC)
Cresults(X,1) =X
Cresults(X,2) = CONC

CALL MEANENERGY (LATTICE,L,Emean,KT,V)
ENERGY(X,1) =X
ENERGY(X,2) = Emean

45 CONTINUE

¢ calculate mean conc + energy (+msd's) over last 100 jump attemps

o

50

CALL FINALENERGY (ENERGY Efinal, ESD,X)
CALL FINALCONC(Cresults,Cfinal,CSD,X)

store the final energy,conc and their sd's in the two data arrays
CvsHB(RUN,1) = HB

CvsHB(RUN,2) = Cfinal

CvsHB(RUN,3) = CSD

EvsHB(RUN,1) = HB

EvsHB(RUN,?2) = Efinal

EvsHB(RUN,3) = ESD

call up the routines to output images of the lattice
best to use the integer RUN rather than an IF equality containing
the real no's HB or temperature KT.
IF (RUN.EQ.1) THEN

CALL CONVERTO(LATTICE,L)
ENDIF
IF (RUN.EQ.20) THEN

CALL CONVERTI1(LATTICE,L)
ENDIF
IF (RUN.EQ.21) THEN

CALL CONVERT2(LATTICE,L)
ENDIF
IF (RUN.EQ.22) THEN

CALL CONVERT3(LATTICE,L)
ENDIF
IF (RUN.EQ.24) THEN

CALL CONVERT4(LATTICE,L)
ENDIF
IF (RUN.EQ.65) THEN

CALL CONVERT5(LATTICE,L)
ENDIF
IF (RUN.EQ.70) THEN

CALL CONVERT6(LATTICE,L)
ENDIF
IF (RUN.EQ.75) THEN

CALL CONVERT7(LATTICE,L)
ENDIF
IF (RUN.EQ.80) THEN

CALL CONVERTS(LATTICE,L)
ENDIF
IF (RUN.EQ.281) THEN

CALL CONVERTY(LATTICE,L)
ENDIF

CONTINUE

output conc and energy results to two data files
CALL RESULTS(CvsHB,EvsHB,RUN)

END

subroutine to initialise user defined parameters
SUBROUTINE SETUP(V,KT,CONC)

REAL V(3),KT,CONC

c set n.n interaction parameters
V(1)=6.90
V(2)=-2.40
V(3)=1.10

¢ set temperature (if not varying in the main loop above)
KT = V(1)*0.01

c set initial concentration .. usefull for long low-temperature runs
Conc = 0.00

RETURN
END

c subroutine to clear and initialise the lattice array
SUBROUTINE INITIALISE(LATTICE,L,0X,CONC,V KT)
INTEGER LATTICE,L,0X
REAL CONC,V(3),KT

¢ empty the lattice array
CALL CLEARLATT(LATTICE,L)

¢ add fixed copper atoms
CALL INICU(LATTICE,L)

¢ count the number of intersitial sites (inax no of oxygens)
CALL COUNT_OX(LATTICE,L,0X)

¢ prepopulate lattice to initial concentration 'conc'
CALL POPULATE(LATTICE,L,0X,CONC)

RETURN
END

C J—

¢ subroutine to delete contents of lattice
SUBROUTINE CLEARLATT(LATTICE,L)
INTEGER L,LATTICE(L,L),1,J

c clears the lattice
DO 130I=1L
DO 120J=1LL
LATTICE(J) = 0
120 CONTINUE
130 CONTINUE

RETURN

END
¢ ==
c subroutine to initialise the copper atoms and block cell
c centers

SUBROUTINE INICU(LATTICE,L)

10
20

30
40

(e}

30
40

C

INTEGER L,LATTICE(L,L),LJ
setting the cu atoms (as -1), row by row

DO20J=1,L2
DO10I=1,L2

LATTICE(L)) = -1
CONTINUE
CONTINUE

setting the site centres as (-10)
DO40J=2L2
DO30I=2L,2
LATTICE(,J) = -10
CONTINUE
CONTINUE

RETURN
END

subroutine to count the number of interstitial sites
SUBROUTINE COUNT_OX(LATTICE,L,0X)

INTEGER L,LATTICE(L,L),OX,LJ
ox is the total no of sites for mobile oxygens within the lattice
0X=0
DO40J=1L
DO 30I=1L
IF (LATTICE(,J).GT.-1) THEN
OX=0X+1
ENDIF
CONTINUE
CONTINUE
RETURN
END

subroutine to randomly populate the lattice to concentration CONC
SUBROUTINE POPULATE(LATTICE,L,0X,CONC)

INTEGER L,0X,LATTICE(L,L),N,LL],A

REAL CONC

REAL GO5DAF

n = no of oxygens required for concentration of 'conc'
a = no of oxygens placed so far

N = INT(CONC*OX)
A=0

randomly pick a site using subroutine picksite

110 CALL PICKSITE(L,LJ)

C

test for out of range values as picksite can select a site within

¢ the heat bath
IF(I.GT.(L).OR.ILLT.1.0R.J.LT.1.0R.J.GT.(L)) THEN

GOTO 110
ENDIF
c if site is vacant then place an oxygen
IF (LATTICE(,]).EQ.0) THEN
LATTICE(L)) = 10
A=A+l
ENDIF
IF(A.LT.N) THEN
GOTO 110
ENDIF
RETURN
END
c
c subroutine to move the atoms (the biggie)
c lots of naughty 'gotos'

SUBROUTINE KINOS(LATTICE,L,V,KT,HB)
INTEGER L,LATTICE(L,L),1J,P,Q

REAL V(3),E1,E2,ESITE,KT,HB

REAL GOSDAF

the complexity of this routine arises from the desire to keep as
many of the subsiduary routines as simple as possible. It has to
deal with 4 separate types of jump all of which require different
handling, Jumps from heat bath to lattice, lattice to heat bath,
within the heat bath (aborted), and within the lattice.

O o0 o o0 O

1,j are the coordinates of the 'jumpfrom' site

p.q are the coordinates of the proposed 'jumpto' site

¢ el,e? are the interaction potentials of oxygens at the two sites
E1=0.000

E2 =0.000

o o

¢ pick an oxygen atom .. may be within lattice or the heat bath
CALL PICKOXY(LATTICE,L,1J)

¢ ifjump is from h:b then set energy as that of hb directly
IFI.LT.1.OR.I.GT.L.OR.JLT.1.OR.J.GT.L) THEN
El=HB
c select a site to jumpto
CALL JUMPTO(LATTICE,L,LJ,P,Q)
GOTO 305
ENDIF

¢ determine intergaction potential of 1st site
CALL SITEXENERGY(LATTICE,L,LJE1,V,KT)

¢ select a site to jumpto
301 CALL JUMPTO(LATTICE,L,LJ,P,Q)

c test whether jump is into heatbath and set e2 directly as hb

305 IF(P.LT.1.OR.P.GT.L.OR.QLT.1.0R.Q.GT.L) THEN
E2 =HB
c if jump is limited to heat bath then abort
IF(LLT.1.OR.I.GT.L.OR.JLT.1.OR.J.GT.L) THEN
GOTO 390
ENDIF
GOTO 310
ENDIF

c test for vacancy at jumpto site
IF(LATTICE(P,Q).NE.0) THEN
GOTO 390
ENDIF

¢ set lattice as if jump has occured before calculating e2
LATTICE(P,Q) = 10

¢ if jump from hb no need to set hb site to zero (outside lat range)
IF(I.LT.1.0RI1.GT.L.OR.J.LT.1.0R.J.GT.L) THEN
CALL SITEXENERGY (LATTICE,L,P,Q,E2,V,KT)
LATTICE(P,Q)=0
GOTO 310
ENDIF

LATTICE(LJ) = 0

CALL SITEXENERGY(LATTICE,L,P,Q,E2,V,KT)
LATTICE(L]) = 10

LATTICE(P,Q) = 0

¢ let's try and do it
310 CALL JUMP(LATTICE,LKT,LJ,P,Q,E1,E2)

390 RETURN
END
c subroutine to perform the jump (or not)

SUBROUTINE JUMP(LATTICE,L,KT,1,J,P,Q,E1,E2)
INTEGER L,LATTICE(L,L),L,J,P,Q

REAL E1,E2,R PROB,KT,DE

REAL GO5SDAF

¢ calculate difference in site energies between the two sites
DE = E1-E2

¢ if dE >= 0.00 then jumpto site has lower energy so always jump
¢ -0.001 required otherwise jumps of dE = 0 fail 50% of times
IF(dE.GE.-0.001) THEN
c jump
GOTO 510
ENDIF

¢ deis <0 so jump is probabilistic ... generate random number R
R = GO5DAF(0.,1.)

¢ normalised probability of jump proceeding

PROB = EXP(dE/(KT))
as dE becomes more negative, prob decreases hence jump
c likelyhood dereases.

¢ if jump probability greater than random value R then jump proceeds
IF(PROB.GE.R) THEN
GOTO 510
ENDIF

¢ if rpogram reaches here then no jump so return
GOTO 520

¢ dojump
¢ reset lattice (ifi,j or p,q are within it and not in h:b)
510 IF (ILT.1.ORI.GT.L.OR.J.LT.1.0R.J.GT.L) THEN
GOTO 515
ENDIF
C previous site becomes vacant
LATTICE(LD =0

515 IF(P.LT.1.OR.P.GT.L.OR.Q.LT.1.OR.Q.GT.L) THEN
c oxygen has returned to heat bath, nothing else to do
GOTO 520
ENDIF

¢ place oxygen at new site
LATTICE(P,Q) =10

520 RETURN
END
—
c subroutine to sum a site's pairwise interaction energy

SUBROUTINE SITEXENERGY (LATTICE,L,LJ,ESITE, V,KT)
INTEGER L,LATTICE(L,L),L,J,X,Y,NN
REAL ESITE,V(3),KT

ESITE = 0.0
C ij,p,q are all in the range 1:L

¢ sum V(1) terms
NN=0

X=1+1
Y=J+1
CALL PAIR(LATTICE,L,LT.X,Y,NN)

X=1+1
Y=J-1
CALL PAIR(LATTICE,L,LJ,X,Y,NN)

X=I-1
Y=J+1
CALL PAIR(LATTICE,L,LJ,X,Y,NN)

X=I-1

(e}

Y=J-1
CALL PAIR(LATTICE,L,LJ XY ,NN)

ESITE = ESITE + (V(1)*NN)

sum V(2) terms
NN=0

look for nn copper atoms
X=I+1
Y=1]
IF(X.GT.L) THEN
X=1
ENDIF
IF (LATTICE(X,Y).EQ.-1) THEN
nn = cu
X=1+2
CALL PAIR(LATTICE,L,LJ,X,Y,NN)
ENDIF

X=1-1
Y=1J
IF(X.LT.1) THEN

X=L
ENDIF
IF (LATTICE(X,Y).EQ.-1) THEN

nn=cu

X=1-2

CALL PAIR(LATTICE,L,LJ,X,Y,NN)
ENDIF

X=1I
Y=J+1
IF (Y.GT.L) THEN

Y=1
ENDIF
IF (LATTICE(X,Y).EQ.-1) THEN

nm=cu

Y=J+2

CALL PAIR(LATTICE,L,LJ, X, Y,NN)
ENDIF

X=1
Y=1-1
IF (Y.LT.1) THEN

Y=L
ENDIF
IF (LATTICE(X,Y).EQ.-1) THEN

nn=cu

Y=J-2

CALL PAIR(LATTICE,L,L,].X,Y,NN)
ENDIF

ESITE = ESITE + (V(2)*NN)

sum V(3) terms
NN=0

X=1+1
Y=]
IF (X.GT.L) THEN
X=1
ENDIF
IF (LATTICE(X,Y).EQ.-10) THEN
c nn = site centre
X=1+2
CALL PAIR(LATTICE,LL] XY, NN)
ENDIF

X=1-1
Y=1]
IF (X.LT.1) THEN
X=L
ENDIF
IF (LATTICE(X,Y).EQ.-10) THEN
c nn = site centre
X=1-2
CALL PAIR(LATTICE,L,IL],X, Y, NN)
ENDIF

X=1
Y=J+1
IF (Y.GT.L) THEN
Y=1
ENDIF
IF (LATTICE(X,Y).EQ.-10) THEN
c nn = site centre
Y =J+2
CALL PAIR(LATTICE,L,LJ, X Y,NN)
ENDIF

X=1
Y=J-1
IF (Y.LT.1) THEN
Y=L
ENDIF
IF (LATTICE(X,Y).EQ.-10) THEN
c nn = site centre
Y=1-2
CALL PAIR(LATTICE,L,IJ,X,Y,NN)
ENDIF

ESITE = ESITE + (V(3)*NN)

150 RETURN
END
c =—==
c subroutine to identify o=0 pairs

SUBROUTINE PAIR(LATTICE,L,LJ,X,Y,NN)
INTEGER L,LATTICE(L,L),L,J,X,Y,NN

simply looks at lattice(i,j) and lattice(x,y) and returns nn=nn-+1
¢ if O=0 pair and nn=nn for all others

¢ next section performs wrap around

IF(X.LT.1) THEN
X=L-X
ENDIF
IF(X.GT.L) THEN
X=X-L
ENDIF
IF(Y.LT.1) THEN
Y=L-Y
ENDIF
IF(Y.GT.L) THEN
Y=Y-L
ENDIF

test if both atoms are an oxygen
I[F(LATTICE(LJ).GT.0.AND.LATTICE(X,Y).GT.0) THEN

NN=NN+1
c 0=0 pair
ENDIF
195 RETURN
END

c

subroutine to randomly select an oxygen atom
SUBROUTINE PICKOXY(LATTICE,L,LJ)
INTEGER L,LATTICE(L,L),LJ

REAL GOSDAF

pick a site

210 CALL PICKSITE(L,1,J)

[

if i,j are within h:b then = oxygen by default
IF (LLT.1.OR.I.GT.L.OR.J.LT.1.0R.J.GT.L) THEN
GOTO 220
ENDIF

check if the site contains an oxygen, if not recall picksite
IF (LATTICE(LJ).LT.1) THEN

GOTO 210
ENDIF

220 RETURN

END

subroutine to pick an site at random
SUBROUTINE PICKSITE(L,LJ)
INTEGER I,JL.

REAL GO5DAF

nb: site may be within the lattice or heat bath.

generates rnd in the range 0 to (L+1)
I = INT(GO5DAF(0.,1.)*(L+2))
J=INT(GO5SDAF(0.,1.)*(L+2))

test for out of range values
IF(I.GT.(L+1).OR.I.LT.0.OR.J.LT.0.0R.J.GT.(L+1)) THEN
GOTO 10

ENDIF

RETURN
END

c subroutine to propose a landing site at random
SUBROUTINE JUMPTO(LATTICE,L,IJ,P.Q)
INTEGER L, LATTICE(L,L),1LI.P.Q,

REAL R
REAL GO5DAF

¢ uses Glauber dynamics and thus picks a jumpto site anywhere
Call PICKSITE(L,P,Q)

RETURN
END

¢ subroutine to determine mean oxygen atom site energy
SUBROUTINE MEANENERGY(LATTICE,L,Emean,KT,V)
INTEGER L,LATTICE(L,L),[L]N
REAL Emean,ESITE, KT, V(3)

¢ n=no of oxygens
sume = total site=energy of oxygens
¢ Emean = mean site energy of oxygens

Emean = 0.00
SUME = 0.00
N=0

DO 620 1=3,L-3
DO 610 J=3,L-3
IF (LATTICE(L,J).EQ.10) THEN
N = N+1
CALL SITEXENERGY(LATTICE,L,1J,ESITE,V,KT)
SUME = SUME + ESITE
ENDIF
610 CONTINUE
620 CONTINUE

IF(N.LT.1) THEN
Emean = 0.00

ELSE

Emean = SUME/REAL(N)
ENDIF

RETURN
END

subroutine to calculate the mean value of mean site energy
¢ and its standard deviation over the last 10 runs
SUBROUTINE FINALENERGY (ENERGY,Efinal, ESD,Y)
REAL ENERGY(1000,2),Efinal ESD,SUM,DEV
INTEGER Y, X
SUM = 0.00

DEV =0.00

DO 750 X = 1,100
SUM = SUM + ENERGY(X,2)
750 CONTINUE
Efinal = SUM/100.00

DO 760 X= 1,100
DEV = DEV + ((Efinal-ENERGY (X, 2))**2)
760 CONTINUE
ESD = SQRT(DEV/100.00)

RETURN
END

c subroutine to calculate the mean value of the conc and its
standard deviation over the last 10 runs
SUBROUTINE FINALCONC(Cresults,Cfinal,CSD,Y)
REAL Cresults(1000,2),Cfinal, CSD,SUM,DEV
INTEGER Y, X
SUM=0.0
DEV=0.0

DO 850 X = 1,100
SUM = SUM+Cresults(X,2)
850 CONTINUE

Cfinal = SUM/100.00

DO 860 X = 1,100
DEV = DEV + ((Cfinal - Cresults(X,2))**2)
860 CONTINUE
CSD = SQRT(DEV/100.0)

RETURN
END

subroutine to store the results arrays CvsHB and EvsHB in
two data files c.txt and e.txt.
SUBROUTINE RESULTS(CvsHB,EvsHB,RUN)
REAL CvsHB(1000,3), EvsHB(1000,3)
INTEGER RUN, X

OPEN (UNIT = 6,FILE = 'C1.DAT',STATUS = 'NEW")
OPEN (UNIT = 7,FILE = 'E1.DAT',STATUS = 'NEW")

DO 910 X = 1,RUN
WRITE(6,980)CvsHB(X, 1),CvsHB(X,2),CvsHB(X,3)
WRITE(7,990)EvsHB(X, 1), EvsHB(X,2), EvsHB(X,3)
910 CONTINUE

CLOSE(6)
CLOSE(7)

980 FORMAT(1X,F16.4,5X,F7.4,5X,F6.5)
990 FORMAT(1X,F16.4,5XF7.4,5X F6.5)
RETURN
END

¢ ===
c test subroutine to check the positions of the copper atoms
SUBROUTINE CHKLATT(LATTICE,L)
INTEGER L,LATTICE(L,L),1,J

DO620J=1L2
DO6101I=1L2
IF (LATTICE(],J).NE.-1) THEN
print * 'chklatt copper error at 'i,j,' = 'lattice(i,j)
ENDIF
610 CONTINUE
620 CONTINUE

DO640J=2L2
DO 6301=2L,2
IF (LATTICE(I,J).NE.-10) THEN
print * 'chklatt centre error at ',i,j,' = 'lattice(i,j)
ENDIF
630 CONTINUE
640 CONTINUE
RETURN
END

¢ subroutine to count the no of oxygen atoms within the lattice
SUBROUTINE COUNT(LATTICE,L,0X,CONC)
INTEGER L,LATTICE(L,L),I,J,OX,N
REAL CONC

N=0

DO 7301=1L

DO720J=1L

IF (LATTICE(L]).GT.0) THEN
N=N+1

ENDIF

720 CONTINUE
730 CONTINUE
c conc is expressed as a fraction of a fully filled lattice
c 1.e conc of OI phase is 0.5
CONC = (REAL(N)/REAL(OX))

RETURN
END

¢ subroutine to save lattice array to a pretty picture in
c an external ascii file

SUBROUTINE CONVERTO(LATTICE,L)
INTEGER L,LATTICE(L,L),LJ
CHARACTER*1 PICTURE(50,50)

DO5201=1L
DOS510T=1L
IF (LATTICE(LJ).EQ.-10) THEN
PICTURE(L]) ="
ELSE IF (LATTICE(LJ).EQ.-1) THEN
PICTURE(L]) ='C'
ELSE IF (LATTICE(I,J).EQ.0) THEN
PICTURE(LT) ="'
ELSE IF (LATTICE(LJ).GT.0) THEN
PICTURE(L]) = 'O'
ENDIF
510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE ='PIC_0.TXT',STATUS='NEW")
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(A1))
RETURN
END

subroutine to save lattice array to a pretty picture in
c an external ascii file

SUBROUTINE CONVERT1(LATTICE,L)
INTEGER L,LATTICE(L,L),LJ
CHARACTER*1 PICTURE(50,50)

DO5201=1L
DO510T=1L
IF (LATTICE(LJ).EQ.-10) THEN
PICTURE(L]) =""
ELSE IF (LATTICE(],J).EQ.-1) THEN
PICTURE(L]) ='C'
ELSE IF (LATTICE(,J).EQ.0) THEN
PICTURE(L]) =""
ELSE IF (LATTICE(L,J).GT.0) THEN
PICTURE(L]) = 'O'
ENDIF
510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE =PIC_1.TXT',STATUS="NEW")
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(A1))
RETURN
END

c
¢ subroutine to save lattice array to a pretty picture in
c an external ascii file

SUBROUTINE CONVERT2(LATTICE,L)

INTEGER L,LATTICE(L.L),LJ
CHARACTER*1 PICTURE(50,50)

DO 520I=1L
DO510T=1L
IF (LATTICE(I,J).EQ.-10) THEN
PICTURE(L]) ="
ELSE IF (LATTICE(I,J).EQ.-1) THEN
PICTURE(L]) = 'C'
ELSE IF (LATTICE(IJ).EQ.0) THEN
PICTURE(L,]) ="
ELSE IF (LATTICE(LJ).GT.0) THEN
PICTURE(L]) = 'O’
ENDIF
510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE ='PIC_2.TXT',STATUS='NEW")
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(A1))
RETURN
END

subroutine to save lattice array to a pretty picture in
an external ascii file

O 0O 0

SUBROUTINE CONVERT3(LATTICE,L)
INTEGER L,LATTICE(L,L),LJ
CHARACTER*1 PICTURE(50,50)

DO5201=1,L
DO510J=1,L
IF (LATTICE(L,J).EQ.-10) THEN
PICTURE(]) =""
ELSE IF (LATTICE(LJ).EQ.-1) THEN
PICTURE(LJ) = 'C’
ELSE IF (LATTICE(J).EQ.0) THEN
PICTURE(LJ) ="
ELSE IF (LATTICE(LJ).GT.0) THEN
PICTURE(LJ) = 'O'
ENDIF
510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE ="PIC_3.TXT",STATUS="NEW")
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(A1))
RETURN
END

¢ subroutine to save lattice array to a pretty picture in
an external ascii file

SUBROUTINE CONVERT4(LATTICE,L)
INTEGER L,LATTICE(L,L),LJ
CHARACTER*1 PICTURE(50,50)

DO 5201=1L
DO5107=1L
IF (LATTICE(LJ).EQ.-10) THEN
PICTURE(LJ) ="
ELSE IF (LATTICE(L]).EQ.-1) THEN
PICTURE(LJ) = 'C’
ELSE IF (LATTICE(LJ).EQ.0) THEN
PICTURE(L]) ="'
ELSE IF (LATTICE(LJ).GT.0) THEN
PICTURE(LJ) = 'O’
ENDIF
510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE ='PIC_4.TXT',STATUS=NEW")
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(A1))
RETURN
END

subroutine to save lattice array to a pretty picture in
c an external ascii file

SUBROUTINE CONVERTS5(LATTICE,L)
INTEGER L,LATTICE(L,L),I,]
CHARACTER*1 PICTURE(50,50)

DO5201=1L
DO510J=1L
IF (LATTICE(LJ).EQ.-10) THEN
PICTURE(,]) ="'
ELSE IF (LATTICE(LJ).EQ.-1) THEN
PICTURE(LJ) = 'C'
ELSE IF (LATTICE(LJ).EQ.0) THEN
PICTURE(L,]) =""
ELSE IF (LATTICE(L]).GT.0) THEN
PICTURE(L]) = 'O’
ENDIF
510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE ='PIC_5.TXT',STATUS="NEW")
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(A1))
RETURN
END

c
c

subroutine to save lattice array to a pretty picture in
an external ascii file

SUBROUTINE CONVERT6(LATTICE,L)
INTEGER L,LATTICE(L,L),LJ
CHARACTER*1 PICTURE(50,50)

DO5201=1L

DO510J=1L

IF (LATTICE(LJ).EQ.-10) THEN
PICTURE(L,]) ="

ELSE IF (LATTICE(I,J).EQ.-1) THEN
PICTURE(L]J) = 'C'

ELSE IF (LATTICE(IJ).EQ.0) THEN
PICTURE(LJ) ="

ELSE IF (LATTICE(LJ).GT.0) THEN
PICTURE(LJ) = '0O'

ENDIF

510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE ='PIC_6.TXT',STATUS='NEW")
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(A1))

RETURN
END

subroutine to save lattice array to a prelty picture in
an external ascii file

SUBROUTINE CONVERT7(LATTICE,L)
INTEGER L,LATTICE(L,L),LJ
CHARACTER*1 PICTURE(50,50)

DO5201=1L

DO510J=1L

IF (LATTICE(LJ).EQ.-10) THEN
PICTURE(L]) =""

ELSE IF (LATTICE(LJ).EQ.-1) THEN
PICTURE(L]) = 'C’

ELSE IF (LATTICE(L,J).EQ.0) THEN
PICTURE(L]) ="'

ELSE IF (LATTICE(LJ).GT.0) THEN
PICTURE(LJ) = 'O'

ENDIF

510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE =PIC_7.TXT',STATUS="NEW")
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(AL))

RETURN

END

¢ subroutine to save lattice array to a pretty picture in
c an external ascii file

SUBROUTINE CONVERTS(LATTICE,L)
INTEGER L,LATTICE(L,L),1,J
CHARACTER*1 PICTURE(50,50)

DO5201=1L
DO510J=1,L
IF (LATTICE(LJ).EQ.-10) THEN
PICTURE(LJ) =""
ELSE IF (LATTICE(LJ).EQ.-1) THEN
PICTURE(LJ) = 'C’
ELSE IF (LATTICE(L]).EQ.0) THEN
PICTURE(L]) ="
ELSE IF (LATTICE(L]).GT.0) THEN
PICTURE(LJ) = '0O'
ENDIF
510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE ='PIC_8.TXT',STATUS="NEW")
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(AL))
RETURN
END

¢ subroutine to save lattice array to a pretty picture in
c an external ascii file

SUBROUTINE CONVERT9(LATTICE, L)
INTEGER L,LATTICE(L,L),L,J
CHARACTER*1 PICTURE(50,50)

DO5201=1L
DO510J=1L
IF (LATTICE(IJ).EQ.-10) THEN
PICTURE(L]) ="'
ELSE IF (LATTICE(LJ).EQ.-1) THEN
PICTURE(L]) ='C'
ELSE IF (LATTICE(LJ).EQ.0) THEN
PICTURE(L]) ="'
ELSE IF (LATTICE(,J).GT.0) THEN
PICTURE(L]) = 'O'
510 CONTINUE
520 CONTINUE

OPEN (UNIT=2,FILE ="PIC_9.TXT',STATUS='NEW")
WRITE (2,560)PICTURE
CLOSE (2)

560 FORMAT(50(A1))
RETURN
END

c ===

C function to permit compiling on a pc running salford fortran77
REAL FUNCTION GO05DAF(A,B)
REAL AB,X
REAL *4 FUNCTION RANDOM(Z)
INTEGER *4Z
X = RANDOM(0)
GO5DAF = (RANDOM(0)*B)
RETURN
END

ccC

ccce
cccC
ccc

ccc

ccc

ccc

10

20

Histogrm.for

a program to test the distribution of random numbers generated by
the FORTRAN library subroutine GO5DAF
B A o L L o o aa s m s S

MAIN

INTEGER RESULTS(1:2,0:101),1,Q.N
REAL GOSDAF
EXTERNAL GO5DAF

DATA RESULTS/204*0/
N = 100000000

DO101=1N
Q = INT(GOSDAF(1.,101.))

test for out of range values
IF (Q.LT.1) THEN
RESULTS(2,0) = RESULTS(2,0) + 1
ELSE IF(Q.GT.100) THEN
RESULTS(2,101) = RESULTS(2,101) + 1
ENDIF

increment the appropriate tally
RESULTS(2,Q) = RESULTS(2,Q) + 1

CONTINUE

DO 20 1=0,101,1
RESULTS(1,]) =1
CONTINUE

OPEN(UNIT=1,FILE = 'H10mill. TXT',STATUS = 'NEW")
WRITE(1, 100)RESULTS
CLOSE(1)

100 FORMAT(1x,16; 'I11)

END

ccc
ccc
ccc
ccc
ccc

cce

cce

10

15

REPITIT.FOR

T T B B B B B B
a program to test for repeated sequences within a large sequence

of random numbers generated by the FORTRAN library routine GOSDAF
e B o

MAIN

INTEGER LIST(1000,2),RESULTSA(10000,2),dX. X.Y,Z N.HITS,FLAG,MFLAG
INTEGER RUN,J,DISTRIB(100),B,C

REAL GO5DAF
EXTERNAL GO5DAF

DATA RESULTSA/20000*0/DISTRIB/100*0/LIST/2000%0/

N = 10000
HITS =1
FLAG=0
MFLAG=0
dX
7=

—
<

generate a list of random numbers and store them in LIST
DO 10 X=1,1000
LIST(X,1) = INT(GOSDAF(1.,100.))
CONTINUE

DO 15 X = 1,1000
LIST(X,2) = INT(GOSDAF(1.,100.))
CONTINUE

DO35B=0N,1
DO 30 C =1,1000

RUN = (B*1000) + C
I=0
FLAG =0

LIST(Z,2)= INT(GOSDAF(1.,100.))
Z=27+1
IF(Z.GT.1000)THEN
Z=1
ENDIF

dX =dX+1
IF(dX.GT.999)THEN
dX=20

ENDIF

DO 20 X = 1,1000
Y=X+dX
IF(Y.GT.1000) THEN

Y = Y-1000
ENDIF

20

C

[F(FLAG.GT.MFLAG) THEN
MFLAG = FLAG
ENDIF

IF(LIST(X,1).EQ.LIST(Y,2)) THEN
FLAG=FLAG+1

J=J+1
ELSE
FLAG=0
ENDIF
CONTINUE

store histogran of correlations in distrib
DISTRIB(J) = DISTRIB(J) + 1

IF(J.GT.24) THEN
RESULTSA(HITS, 1) = RUN + 1000
RESULTSA(HITS,2) = J
HITS = HITS + 1

ENDIF

30 CONTINUE

35

90

CONTINUE

OPEN(UNIT=2,FILE='"FLAGS.TXT',STATUS='NEW")
WRITE(2,*MAX REPEATED SEQUENCE LENGTH =' MFLAG
WRITE(2,¥)ON A RUN OF',(N*1000),' RANDOM NUMBERS'

CLOSE(2)

OPEN(UNIT = 1,FILE='REPITA. TXT',STATUS='NEW")
IF(HITS.GT.1) THEN
DO 90 X = 1HITS
WRITE(1,100)RESULTSA(X,1),RESULTSA(X,2)
CONTINUE
ELSE
WRITE(1,100)-1,-1
ENDIF
CLOSE(1)

OPEN(UNIT=3,FILE="REPDISTB.TXT',STATUS = 'NEW')
WRITE(3,110)DISTRIB
CLOSE(3)

100 FORMAT(1X,19, 'I6)
110 FORMAT(1X,I8)

END

