
D
R
A
F
T

2
Freefall: adding gravity and drag

2.1 Let’s Plan

We now have enough experience to start to plan programs before starting to code.

Imagine that we wanted to create a house. If we started by laying bricks without a

plan we would most likely make mistakes and have to keep restarting from scratch.

A little time planning will save us a great deal of time later.

We might take a top-down approach. Starting with the outer walls, decide how

many rooms, then work down to finally designing each room.

Or we could go bottom-up. Design each room then ‘bolt’ the room plans together

to form the final design.

Taking the top-down approach we want our program to

• Simulate a mass falling under gravity plotting graphs of velocity, displacement

and acceleration.

• The mass will accelerate under gravity.

• We want to allow for drag.

So, we could have the following functions:-

updatePosition

calcAcceleration

calcNetForce

calcWeight calcDragForce

2.2 Gravity?

So far our ball is moving at a constant speed. In a gravitational field it will accelerate.

When close to the earth’s surface at a constant rate of 9.81 ms−1. How can we add

this to our model?

D
R
A
F
T

16 Chapter 2: Freefall: adding gravity and drag

The simplest way is to keep updating the velocity using v = u+ aδt. Every time

quantum - δt (trip around the while loop) we calculate the change in velocity gδt

and add this to the velocity.

Since the velocity is a vector we should define g as a vector.

g = vec (0,-9.81,0)

Here we are setting the acceleration in the x & z directions to be zero and in the y

direction (vertically) to -9.81 i.e. 9.81 ms−1 downwards.

So we could add a new function updateVelocity - after the updatePosition

#--

def updateVelocity(x, g):

x.vel = x.vel + (g * dt)[

return x

#--

However... later we will also be adding drag - which is a force. Thinking ahead

maybe we should determine the Force of gravity on the mass and calculate the

acceleration using Fgrav = ma = mg and then a =
Fgrav

m
.

A tricky one this ... we will be repeating an identical calculation very time we loop

around - this seems pointless and will slow our simulation. Later though, when we

add a drag force we can add this to Fgrav and calculate the changing acceleration

every iteration of the loop using a = Ftotal

m
.

If we divide our code up into short functions this will be easy to do.

2.3 Drag?

Well, we now have a codebase which simulates freefall. It is pretty easy now to extend

this with drag. Stoke’s Law is a simple model of drag which sets the drag force

proportional to the velocity.

Fdrag = 6πrηv

Here η is the ‘dynamic viscosity’ of the fluid, v the fluid velocity over the projectile

and r its radius.

Thinking on this, are we trying to explicitly model a specific object with a known

radius moving though air of a given viscosity or are we simply trying to model the

form of the motion?

In the latter case we can simplify the above equation to

Fdrag = kv

We can simply create a new function calcDragForce

D
R
A
F
T

2.4 The Importance of the Time Quantum 17

#--

def calcDragForce():

dragForce=vec(0,0,0)

return dragForce

#--

We haven’t yet coded calculation of the drag, simply set it as a zero vector. Such

as empty function is often called a stub. We can write it into our program and fill

in the actual instruction statements later.

We could write our entire program initially using stubs - a bit like writing a book

by first creating the section headings before fleshing out the actual content.

2.4 The Importance of the Time Quantum

........................add plot here..............

A falling mass accelerates constantly - not in the discrete jumps we code here1

The smaller the time quantum the better our model approximates to reality.

However, smaller time intervals result in more calculations. This is a common

trade-off in computational physics - which is why physicists like really powerful

supercomputers.

2.5 Extension Activity – Wind

If we have a horizontal wind, this will add a further drag for pushing the mass

sideways. So we could add another function to calculate the horizontal drag due

to wind? This new drag force could simply be summed with the gravitational and

vertical drag force to give the net 3d force.

However ... Since vython operates with 3d vectors we do need need to separately

calculate a horizontal and vertical drag. We simply calculate the drag using Fdrag =

6πrηv. This will return a force as a 3d vector. The net-force is simply Fnet =

Fgrav + Fdrag. Then a =
Fgrav

m
will return acceleration a as a 3d vector. Rather neat!

I suggest creating a new global variable for the wind speed windSpeed=vec(5,0,0).

2.6 Summary

We are now getting sophisticated. In our programming we appreciate the merits of

planning our programs in advance. We can break to program down into sub-programs,

such as functions. These can then be ‘assembled’ using emptystubs, before we have

to write the algorithms.

We have seen how vpython’s inbuilt handling of 3d vectors means that we no longer

need to think in simplistic terms of resolving a vector into x,y,z components rather

we simply use the 3d vector description.

1actually the question of whether time and space are quantised are moot in fundamental physics.

However - if there are fundamental lengths of distance and time these are very small indeed.

D
R
A
F
T

