
Chapter 3

Simulating Diffraction Patterns

3.1 Introduction

Diffraction techniques provide powerful tools to study how materials order at the atomic level.

X-rays were first used to probe microscopic order, these have since been supplemented with

electron and neutron scattering methods. In the specific case of this work the ordered structures

produced by Monte-Carlo molecular dynamic simulations can be compared to real world sam-

ples by calculating their virtual diffraction patterns for comparison with those from experiment

The study of diffraction patterns from 3-d structures is very well established. Thomas Young

famously observed two slit interference of light in ∼1802 concluding that light was a wave

rather than a particle as proposed by Newton - a debate that still continues to this day. Such

interference patterns are a natural consequence of Huygens construction where every point on a

waterfront may be assumed to be a source of secondary wavelets. 2-d diffraction gratings were

well developed by the mid 1800s. The possibility of diffraction from 3-d atomic structures was

suggested by Ewald and Laue in 1912 with the first x-ray diffraction pattern produced shorty

thereafter.

The terminology here is somewhat imprecise. A diffraction pattern is the result of the inter-

ference of diffracted waves. At a physical level the processes are the same, we tend to use

interference when referring to a few scatterers and diffraction for many.

X-rays, electrons and neutrons are used in atomic diffraction studies. Relatively inexpensive and

compact equipment is capable of generating x-rays whose wavelength is of the order of the inter-

atomic spacing. X-rays scatter from electrons thus the scattering power of an atom depends upon

the number of electrons it possesses i.e. its atomic number. Palladium with 46 electrons scatters

much more strongly Hydrogen with only 1. In the case of Pd-H, scattering from the palladium

masks the signal from the hydrogen. Instead thermal neutrons with de-Broglie wavelengths of
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the order of Å s may be used as the neutron scattering factor does not vary simply with Z number

and is highest for hydrogen. A suitably bright neutron source may be a nuclear reactor, such as

that at Grenoble or a proton synchrotron such as ISIS which generates neutrons by spallation

from a tungsten target illuminated by protons. This equipment is many times larger, expensive

and complex then x-ray diffractometers. As x-ray, electron and neutron scattering patterns are

due to the summing of scattered waves from the target it is straightforward to simulate this

process.

A brief overview of scattering theory is first presented followed by a discussion of how a diffrac-

tion pattern may be computed from a simulated sample.

3.1.1 General Scattering Theory

The kinematic model provides a simple view of scattering. An incident wave-front may be

scattered by discontinuities in its path. X-rays scatter from orbital electrons whilst neutrons

scatter from atomic nuclei. These scattering centres act as sources of spherical wavefronts (s-

wave scattering). At some distance wave-fronts from many scatterers interfere thereby creating

regions of high and low intensity depending on the phase contributions from each wave.
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FIGURE 3.1: Simple Kinematic Scattering

In this simple treatment the scattering is assumed to be elastic i.e. the magnitude of the scattered
wave vector is equal to that of the incident. |k′| = |k|. The amplitude of the incident wave
arriving at a point j in the sample is given by Aj = A0e

iK·rj . Thus the scattered amplitude As
arriving at a detector at a distance Ri from the ith atom is given by

Ai =
A0

Ri
fei(kx−ωt) (3.1.1)

where f the scattering factor is a measure of the scattering power of the atom. If the distance
to the detector is very much greater than the atomic spacing then Ri may be to a constant R. In
reality a scattered wave is likely to undergo further scattering. In simple models this effect is
ignored as it greatly increases computing time.
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3.1.2 The Scattering Vector q

Consider two atoms i and j, illuminated by a coherent beam of radiation from a source at∞, of

wavelength λ and thus wavevector |q| = 2π
λ . The difference between the incident and scattered

wave vector is known as the scattering vector where k′ = k + q
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FIGURE 3.2: Wave Vectors
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FIGURE 3.3: k incident, k′ diffracted and q diffraction vectors

Given that |k′| = |k| it is apparent that

|q| = 2|k| sin
(
k∠k′

2

)
(3.1.2)

Waves incident on the detector, scattered as qi and qj will interfere and thus a diffraction pattern

may form.

3.1.3 Formation of a Diffraction Pattern

We now imagine an ensemble of N identical atoms sitting at 3d positions ri from some arbitrary

origin r0 with a detector at a distance much greater than the size of the sample. We may thus

approximate the distance from all points to the detector as a constant and ignore the amplitude-

distance terms. The position of each detector pixel may be described by k′ with respect to the

origin of the sample. At some point k′ on the detector waves scattered from the atoms arrive

and interfere. The amplitude of each scattered wave is given by

A(k′) = fe−i(k−k
′)·r (3.1.3)
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FIGURE 3.4: Diffraction pattern from many sources

As q = (k− k′)

A(q) = fe−i(q·r) (3.1.4)

For N scatterers we sum the waves from each scatterer j

A(q) =
N∑
j=1

fje
−i(q·rj) (3.1.5)

The detector will measure the intensity of the radiation at each pixel summed over all scatterers.

This is equal to the square of the scattering amplitude A, being a complex number - strictly the

product of the amplitude with its first complex conjugate.

I(q) = |A||A∗| =
N∑
j=1

N∑
k=1

bje
−i q·rjk (3.1.6)

The Bragg peaks at nλ = 2d sin θ give information from long-range ordering. These simulations

are concerned with short-range order resulting from growth of crystal domains. The size of

domains may be inferred from their broadening of the Bragg peaks using the Scherrer equation

τ =
Kλ

β sin θ
(3.1.7)

where τ is the domain size, K a dimensionless shape parameter generally taken as 0.9. β is the

full width - half maximum peak broadening expressed in radians and θ the Bragg angle. ****

image of peak broadening *******
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3.1.4 Pair Distribution Functions

The diffraction pattern is a function of the degree of spacial ordering within the sample therefore

of the density distribution of scatterers. Taking into account such pair distribution is of particular

importance when considering partly ordered systems.

The reduced P.D.F. g(r)is simply the probability of finding a pair of particles at a specific

distance r from one another. g(r) is often expressed as the normalised form such that as

r → ∞, g(r) → 1 and for r < distance of closest approach g(r) = 0. The pair distribu-

tion function may be obtained directly from a M.D. simulation where it is related to the pair

density function ρ(r) by ρ(r) = ρ0g(r). As r → ∞, ρ(r) will tend to ρ0, the mean number

density of the sample and tend to zero as r → 0

g(r) = 4πr (ρ(r)− ρ0) = 4πρ0r (g(r)− 1) (3.1.8)

Within a shell at a range r1 → r2 we may specify the number of neighbours, a site’s coordination

number as

Nc =

∫ r2

r1

R (r) dr (3.1.9)

In the Debye scattering method the calculation is optimised by ‘binning’ these coordination

numbers in advance then calculating

I(q) =
1

N

N∑
i=1

fiNci

sin(2πqri)

2πqri
(3.1.10)

FIGURE 3.5: Example of binned interatomic distances for C=0.29 ordered lattice
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We may now specify a radial distribution function R(r) describing the number of atoms in a

shell of thickness d(r) at a distance r:-

R(r) = 4πr2ρ(r) (3.1.11)

giving

g(r) =
R(r)

r
− 4πrρ0 (3.1.12)

This may be easily determined at any point in a molecular dynamics simulation. If we assume

initially that atoms sit at precise positions ri without thermal or other displacements then their

positions may be expressed as a series of delta functions δ (r0 − ri). Setting r0 = 0 gives

R(r) =
1

N

∑
i

∑
j

δ (rij) (3.1.13)

The reduced pair distribution function g(r) is the Fourier Transform of S(q) the total scattering

structure function – effectively the normalised diffraction pattern.

G(r) =
2

π

∫ qmax

qmin
q[S(q)− 1]sin(qr)dq (3.1.14)

The inverse transform is more useful here

S(q) = 1 +
1

q

∫ ∞
0

r(r)sin(qr)dr (3.1.15)

3.1.5 The Role of Reciprocal Space

Reciprocal space (also momentum space, k-space is a convenient abstraction when considering

diffraction from a periodic structure being the Fourier transform of the real space direct lattice.

Points in reciprocal space represent families of planes in the direct lattice. A key feature being

that the vector direction between any two point in the reciprocal lattice represents the direction

between two planes in the direct lattice. The magnitude of the reciprocal vector is the reciprocal

of the interplanar spacing. Expressing these reciprocal lattice vector lengths as |G| = 2π
λ gives

the distance in radians per unit length.

If we have a set of atomic positions in real space ri = (hxi + kyi + lzi) then the Fourier

transform is given by

f(r) =
∑
G

f(G)ei(G·r) (3.1.16)
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The key point here is that this transform maps directly the diffraction pattern from the scatterers

i.e.

S(q) =
∑
i,j,k

eiG·r (3.1.17)

FIGURE 3.6: Construction of the Reciprocal Lattice.

Real space points are +, reciprocal points ·

The reciprocal lattice axis vectors are given by

b1 = 2π
a2 × a3

a1 · a2 × a3
b2 = 2π

a3 × a1

a1 · a2 × a3
b3 = 2π

a1 × a2

a1 · a2 × a3
(3.1.18)

Note that b1 is orthogonal to both a2 and a3, b2 is to both a1 and a3 and so on. Points in the

reciprocal lattice are mapped as

G = hb1 + kb2 + lb3 (3.1.19)

As is generally accepted diffraction peaks occur when q = G. [70]

3.2 Simulating a Diffraction Pattern

Given a known crystal structure one may calculate the reflections from specific planes - the

inverse of conventional experimental crystallography. The alternate approach, used here is to

calculate the diffraction pattern from a set of atomic positions mirroring the physical processes

in experimental x-ray or neutron crystallography. Such an a priori technique makes few of the
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assumptions of conventional crystallography such as ‘reflection from planes’ though is computa-

tionally somewhat expensive. Since we are considering an a priori algorithm it may be helpful

to initially limit standard crystallographic terminology and formulate the problem in general

physical terms.

We wish to simulate the diffraction pattern formed when a beam of radiation is incident upon

group of atoms. These scatterers interact with the incident radiation resonating and emitting

spherical wavefronts. Different scatterers will have different scattering powers. Here we are

only considering scattering by Hydrogen so this scattering factor can be set to unity. A number

of methods have been developed to simulate diffraction patterns directly from atomistic data.

The most direct takes a rather brute force approach. One simply determines the linear path

lengths from a monochromatic coherent radiation source to each atom in the model and from

there to every pixel on the detector array . Sin 2π and cos 2π of nλ for each path are summed

at each pixel giving the resultant amplitude and phase. This scales directly with Natoms ×
npixels, for a sample of 106 atoms and a linear detector of 104 pixels one has of the order of

1010 iterations - perfectly acceptable on a modern workstation. Since each calculation does not

depend on the others then this is easily optimised by parallel processing. One problem here

though is the need for the paths lengths to be very long compared to the size of the sample and

hence the differences in atomic positions. This to avoid distortion of the pattern by some parts

of the sample being significantly closer to the detector than others. If the simulation mirrors a

real diffractometer the sample → detector distance will be > 108× the inter-atomic spacing.

Assuming that we need to resolve path differences of 10−2 of this spacing we require a precision

of 1 : 1010. To overcome this one needs to use high precision ’long’ real numbers which

significantly slows computation.

A more sophisticated approach involves calculating

I(k′) =
∑
i 6=j

∑
j

eiq·rij (3.2.1)

to every point on the detector array (fig: 3.4). If we assume that to the incoming radiation each

atom acts as a point scatterer and that the atoms do not move their positions may be represented

as a series of δ-functions. A further simplification may be introduced in assuming that the size of

the region being sampled is much smaller than the distance between the sample and the detector.

Thus we can assume that the scattering distance and angle from each atom to each point on the

detector are approximately constant. The problem with this method again computational load.

For a sample of 105 atoms and a 2d detector of 106 pixels one would need to perform some 1016

calculations before needing to rotate the sample to ensure that all possible peaks are detected.

Without optimisation this is impractical. This has the appearance of Fourier transform and so it

should be practical to perform an F.F.T. if we assume that the scatterers are both point entities
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and sit on points fixed on a regular 3d lattice. If the points are permitted to displace from these

regular point, via thermal vibration or during diffusion one cannot perform an FFT. This could

be addressed by defining a grid whose spacing is much smaller than the lattice parameter and

limiting scatters to these discrete positions. With say 106 atoms and 10 intermediate points

between the regular lattice sites results a grid of 109 points with only 0.1% filled at any time.

This will lead to very large data arrays which without some optimisation will again add to

computation time.

In the 1980s a simulation technique using the Debye scattering equation for powder samples

was developed.

I(q) =
1

N

N∑
i=1

N∑
j=1

fifj
sin(2πqrij)

2πqrij
(3.2.2)

where fi, fj are the scattering factors of the respective atoms and q, rij are equal to |q| and |rij|
respectively. The algorithm may be optimised by binning the distances rij before performing

FIGURE 3.7: Virtual Debye Diffraction Pattern demonstrating only (hkl) all odd or all even as
expected for FCC structure

the computational intensive sin calculations. With sufficiently narrow bins errors generated are

minimal (fig (3.5). In effect this technique loses the absolute spacial, i.e. directional, information

in favour of computationally faster method of generating pair distributions (the bins). The size

of crystal regions may be inferred from peak broadening rather than being directly observed.

This technique is very fast, on a 3 GHz workstation a pattern from 104 atoms, with 104 detector

pixels and 105 bins computes in some 100 seconds(fig 3.7). Scaling to a more realistic 106

atoms takes ∼ 3 hours.

The technique used here for the contour 2d plots involves summing ei(G·ri) over a range of Gx
and Gy (fig 3.8).
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FIGURE 3.8: 2d contour plots of partly filled lattice in (hk1)
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